
Design Report
Solid-State LiDAR to
Detect Cyclists

MINDHASH × University of Twente EEMCS

11 November 2022

Group 6 Supervisor

Jasper van Amerongen s2384442 Dr. Duc V. Le

Sebastiaan Hofstee s2300257

Omar Elkady s2389541

Remy Benitah s2247372

Malek Assaad s2374544 Word Count: [~18000]

\

Table of Contents
Introduction 6

Project Objectives & Scope 7

Stakeholder’s Problem 7

Support for LiDAR 7

Project Objectives 8

Project Scope 9

Uncertainty & complexity 9

Knowledge building potential & strategic fit 9

Requirements Specification 10

Goal-level Requirements 10

Domain-level Requirements 10

Product-level Requirements 11

Design-level Requirements 11

Architecture-level Requirements 12

Governance 13

Responsibilities 13

Stakeholders 14

Project Management Approach 15

Communication 17

WhatsApp & Microsoft Teams 17

Slack & Google Meet 17

Risk & Feasibility 18

Risk Analysis 18

Human risk 18

1

\

Scope creep risk 19

Black swan risk 19

Impact & Feasibility Audit 19

Requirement Feasibility 19

Time Feasibility 20

Machine Learning & Sensing 21

Subsystem Overview 21

Scientific Background & Contribution 23

Design Choices 23

Data 24

Data Collection 25

Data Labelling 26

Data Processing 27

Preprocessing 27

Data augmentation 29

Model 30

Architecture & Related Research 30

Context 31

Model choice 31

PointPillars 33

Pillar Feature Net 34

2D-CNN 34

Detection head 34

Implementation 35

Performance metrics 36

Training and Results 37

Model limitations 40

2

\

Tools 41

Matlab 41

GitLab 41

Visualisation 42

UT Remote Desktop 42

Tracker 42

Data Collector 43

Materials 43

Web Application 44

Subsystem Overview 44

Backend Architecture 45

Firestore 45

Cloud Functions 45

Latter Data Pipeline 45

Frontend Flow 47

Authorisation 47

Home page 47

Analytics page 48

Dark mode 50

Design Choices & Process 51

Technology Stack & Tools 51

Backend 52

Frontend 52

Tools 54

Graphs 54

Aesthetics 55

Documentation & Reference 55

3

\

Folder Structure 55

Design Pattern: ./src 56

Cloud Functions: ./functions 57

Simulator 57

Security 59

Time Zones 59

Testing & Results 60

Machine Learning Model 60

Full System Testing 60

Legal Considerations & Compliance 62

Data Protection Law (GDPR) 62

Intellectual Property Right 63

Software Licences 63

Discussion & Future Work 65

Additional Metrics 65

Edge Implementation 65

Hardware 65

Occlusion 66

Web Application 66

References 68

Appendix A: Manual 74

Web App 74

Client 77

Data collection 78

Appendix B: Team Contract 80

Team information 80

Project Goals 80

4

\

Team Expectations 81

1. Participation 81

2. Meetings 81

3. Communication 81

4. Individual Accountability 81

5. Conduct 81

6. Conflict 82

Team Agreements 82

5

\

Introduction
As an integral part of the programme, students of the bachelor of Technical Computer Science at

the University of Twente, Enschede have proposed, designed and implemented a product for a

client of their choosing, with the intent of displaying mastery of the project design track. During a

ten week period, Jasper van Amerongen, Sebastiaan Hofstee, Omar Elkady, Remy Benitah and

Malek Assaad, hereinafter referred to as Group 6, have partnered with MINDHASH in

materialising a portable solid-state LiDAR (SS-LiDAR) module and corresponding machine

learning (ML) model to detect and count cyclist in dedicated bike lanes.

MINDHASH is a company focussed on developing their clients' ideas using hardware and

software. Some of their clients include municipalities interested in gaining insight into traffic

usage and (mis)conduct. To this end, a common practice is to deploy pneumatic tubes across the

road and use spikes in internal pressure to detect crossing vehicles (Brosnan et al., 2015).

However, MINDHASH is interested in finding a way to incorporate LiDAR and ML to accomplish

the same goal of counting traffic, and bicycles in particular.

Given that MINDHASH has in-depth knowledge about the applications and implementations of

rotational LiDAR (R-LiDAR) and corresponding machine learning models, in this document and the

rest of the project this knowledge will be assumed. However, MINDHASH have indicated that

solid-state LiDAR is a new area to them and thus do not have existing models. This is where they

see the opportunity for Group 6 to find new insights.

6

\

Project Objectives & Scope

Stakeholder’s Problem

Briefly mentioned in the introduction, current practices for detecting and counting vehicle

throughput in a given lane is achieved by detecting changes in air pressure in pneumatic tubes

across the road over which vehicles pass. This is a readily available, cheap and easily deployable

solution. However, it has some drawbacks: This method is inaccurate especially when deployed

across multiple lanes or lanes where overtaking is prevalent; insights other than throughput -

such as size, velocity or direction cannot be measured; the tubes and other machinery are

inherently exposed to wear and tear due to physical contact and moving parts (Brosnan et al.,

2015). MINDHASH believes that LiDAR in combination with machine learning can provide a

solution that circumvents these drawbacks, whilst providing a more accurate result. For those

reasons they looked to start an exploratory project to see what the capabilities and limits are of

SS-LiDAR in this application. As they put it themselves:

“Municipalities and traffic consultants are interested in the amount of traffic on

roads given the time of day as this can indicate a certain level of safety. (...) At

Mindhash we believe that LiDAR, and especially the solid state variant, can

provide an affordable and more accurate alternative to existing methods for

counting traffic.”

Support for LiDAR
As previously mentioned, the existing solution to this problem has many drawbacks that can be

eliminated through the usage of a sensor such as a LiDAR. However, it could be argued that

something such as a camera would provide for an even more cheap and robust solution. This is

not the case as cameras have a few main issues which the LiDAR is able to circumvent. Firstly,

cameras provide a major concern for privacy. This is a product being developed by a private

company for the usage of municipalities and there would need to be high amounts of

consideration for privacy with the usage of a camera. Based on the results of this project, and the

resolution of the data being collected, it is not possible to identify individuals with the LiDAR

7

\

which eliminates any privacy concerns. Furthermore, cameras are highly susceptible to weather

conditions and visibility issues such as snow, rain, and lack of light. The LiDAR package which is

being used includes settings that already account for this and because the sensor uses point

cloud data it does not suffer from visibility issues.

Project Objectives

Based on the written project description and on the initial meeting between Group 6 and Lasse

Licht and Sierd Meijer from MINDHASH on 9 September, we have identified two objectives to this

project:

1. Design and implement an integrated SS-LiDAR system to detect cycle lane

traffic across a bidirectional cycling lane and a means of displaying real-time

insights.

MINDHASH wants to explore the capabilities of an integrated SS-LiDAR system, based

around the Livox Mid-40, in the application of capturing cyclist traffic data. The cycle lanes

are standardised bidirectional lanes as found in The Netherlands and the greater

Enschede area in particular. This system should be able to capture, preprocess, interpret

and conclude the captured data in real-time (see Requirement Specification). The gained

insights should be displayed digitally, preferably on a reactive mobile web app.

2. Gain insights into a robust method for counting cycling lane traffic using a

SS-LiDAR, emphasising on its feasibility with existing R-LiDAR trained models

and different hosting platforms.

MINDHASH is experienced in applying R-LiDAR and possesses machine learning models

to work with this device. However, seeing that they want to expand their expertise into

SS-LiDAR applications as well, they want to know if they can use and adapt if necessary

their existing models to use SS-LiDAR.

8

https://www.livoxtech.com/mid-40-and-mid-100

\

Project Scope

A formality of defining the project’s scope is covering the project’s uncertainty and complexity

(Shenhar, 2001), as well as its knowledge building potential and strategic fit (Nobelius, 2001).

Uncertainty & complexity
Shenhar (2001) has outlined a framework for determining a project’s technological uncertainty

and its complexity in a two-dimensional plane. The team has implemented a system using a

custom model, hosted on partially in the cloud and with data from an SS-LiDAR. These

technologies are not widespread and require a certain level of expertise. For this reason both our

hosting strategy and model strategy lift this system to high-tech (type C) technological uncertainty

(Shenhar, 2001). The system can be characterised as a scope level 2 system (Shenhar, 2001).

Knowledge building potential & strategic fit
Another scope-defining metric is the project’s knowledge building potential and strategic fit.

These are the two primary factors of predicting project success. A project’s knowledge building

potential encompasses how much new knowledge the client can gain from a project. The

strategic fit determines how well a project fits in the strategy - short and long term - of the client.

Based on how well this project fits this two-dimensional scale determines whether to cancel,

redirect, outsource or keep a project. (Nobelius, 2001).

As discussed in the Stakeholder’s Problem, MINDHASH is actively looking for in-house research

into the deployment of SS-LiDAR for traffic observation. As a hardware-software company looking

for new opportunities and addressing the needs of their clients is a continuous strategy. As a

matter of fact, this project was issued primarily for this reason. Based on that it is clear to see that

this project has both high knowledge building potential, as seen by the lack of experience with

SS-LiDAR, and strategic fit, since this project will be directly competing with existing solutions

based on pneumatic tubes.

9

\

Requirements Specification
Having narrowed down the scope of this project, we will move on to formalising its details in the

form of a requirements specification. Requirements can be organised on a goal-design scale

(Lauesen, 2002), with four levels of specificity: goal-level, domain-level, product-level and

design-level. Goal-level requirements refer to the requirement of the system to meet the project's

objective or other high-level business goals. Domain-level requirements specify certain

supporting tasks that the system will realise. Product-level requirements define individual

functionalities of the system and design-level requirements describe details of the system’s

interface. For this project, we have extended Lauesen’s scale (2002) with a fifth level of

requirements, namely architecture-level requirements. These include certain architectural and

otherwise technical requirements that play a crucial role in the implementation and therefore

should be considered. Furthermore, each requirement has been assigned a priority. These

priorities are labels derived from the MoSCoW method (Clegg & Barker, 1994). This is an

abbreviation for ‘Must’, ‘Should’, ‘Could’ and ‘Won’t’. We have defined our MVP to consist of all

requirements labelled ‘Must’ and we will omit ‘Won’t’ labelled requirements. In addition to a

priority badge, the requirements have been decorated with a badge indicating if they were met at

the end of this project.

Goal-level Requirements

R1 Implementation of the system shall explore if SS-LiDAR is a viable option for replacing

existing solutions for cycling lane traffic monitoring. Must ✓

Domain-level Requirements

R2 The system shall be able to identify bicycle lane traffic, being bicycles, scooters and

pedestrians, with an accuracy of 80% or more. Must ✓

R3 The web application shall display data analytics of observed traffic. Must ✓

10

\

R4 The system shall be able to provide data analytics in near real-time, with a maximum

delay after detection of one minute. Should ✓

R5 The web application shall support remotely accessible data analytics.

Must ✓

R6 The system shall be remotely manageable. Could ✓

Product-level Requirements

R7 The system shall be portable. Must ✓

R8 The system shall be able to run off a battery, which itself can be charged.

Could ✗

R9 The system’s enclosure, including the LiDAR module itself and accompanying hardware,

shall be weatherproof to IP34 or above. Could ✓

R10 The system shall be connected to the Internet. Must ✓

R11 The web application shall have the option of displaying analytics (absolute amount,

average frequency, etc.) lively in the current session or displaying analytics over a

previous time frame (last week, month, year etc.). Should ✓

R12 The web application requires authentication to operate. Should ✓

Design-level Requirements

R13 The web application shall be implemented with Mantine. Must ✓

R14 The web application shall maintain a certain level of design coherence.

Should ✓

R15 Temporal data analytics will be displayed as a chart, with variable temporal scopes.

Should ✓

11

\

Architecture-level Requirements

R16 The system shall use a Livox mid-40. Must ✓

R17 The system shall run on a Raspberry Pi or otherwise similar microcomputer.

Must ✓

R18 The system shall use an FPGA board. Could ✗

R19 The system shall use a machine learning model to infer cycling lane traffic objects.

Must ✓

R20 The web application shall be hosted in Firebase. Must ✓

R21 The web application shall be developed with the React framework. Must ✓

12

\

Governance
This chapter will shine a light on who is responsible for what aspects of the project, which

stakeholders are important and at what level their cooperation and feedback is required, what

project management approach is suitable and which communication media will be used

throughout the project for communicating internally and with the stakeholders.

Responsibilities

The members of group six have varying skill sets. To maximise the result of this project, it is

sensible to play on each other’s strengths. In doing so, it follows naturally that Sebastian Hofstee,

with prior experience in AI and ML consisting of a research paper and current enrollment in a ML

Master’s course at the University of Twente, takes the lead in achieving the first objective of this

project, which is the creation of a working model used to detect and classify bicycles in point

cloud data frames. Sebastiaan, Remy Benitah and Malek Assaad have worked with each other

previously and did so in good cooperation. It is therefore that we believe that Remy and Malek

are well suited to aid Sebastiaan in this track.

Jasper van Amerongen is experienced in building front-ends, in particular with React and backed

by a Firebase environment, and has an eye for design. He used this strength to take the lead on

the development of a web application for displaying the insights gained from the LiDAR data.

Furthermore, he attended a minor focusing on project management and project proposals in

particular, so this experience will be put towards writing this and other documents. Omar Elkady

will work together with Jasper to research different hosting and model strategies as is prescribed

in objective 2. Omar and Jasper have prior cooperation experience and it is for this and

aforementioned reasons we believe they are a good fit for developing data visualisation and

achieving objective 2.

This split does not imply that the members of Group 6 will not work closely together. Objective 1

and 2 are inherently tied together by the fact that objective 2 is likely to determine the strategy to

be used to achieve objective 1. The split in Group 6, however, enables us to execute tasks in

13

\

parallel. This is especially useful in cases where attendance to a problem by all five members is

not required.

Some tools are also needed during the development process such as one for data collection

before training an ML model and a LiDAR visualizer. Malek, Omar and Sebastiaan worked on

these tools to aid in the development of the final system. Remy’s time was very importantly spent

labelling about 600 frames of point cloud data to help the group achieve a high AOS and mAP on

the ML model.

With both project objectives matched to subsets of Group 6, responsibility for to be determined

soft deadlines and successes lie in the hands of the corresponding people. To ensure everyone

makes ends meet, a group contract has been drawn up and signed. This contract defines

responsibilities on an objective level, rather than outlining individual tasks, as these are hard to

define upfront (see Appendix A). This will be discussed further in the Project Management

Approach. Since prior cooperation has been established, friction is not expected. However, this

cannot be ruled out and is outlined in the contract as well.

Stakeholders

As has been demonstrated in the Introduction, this project is an internal and exploratory one with

no business operations directly attached or dependent. This has the benefit of having very few

stakeholders. The primary stakeholder is Lasse Licht, CEO and founder of MINDHASH. He has

commissioned this project at the University of Twente and in turn to Group 6. Another two

equivalent stakeholders are Sierd Meijer and Nadu Rebeja. Both are employees at MINDHASH

and are expected to further develop this project or use findings in insights in other projects once

completed. A fourth stakeholder in this project is Le Viet Duc. He is a researcher with the EEMCS

Pervasive Systems group at the University of Twente and supervisor to this project. His stake in

this project is purely supervisory and there is no tangible interest for him in terms of the outcome

of this project.

To demand an appropriate level of interest and contribution of this project’s stakeholders, we

can order them in an Interest-Influence matrix (Mendelow, 1981). This matrix defines four

14

\

quadrants along two axes. Each quadrant prescribed a level of bilateral engagement between the

team and stakeholder:

● Highly interested, highly influential stakeholders should be managed closely and

actively engaged and great effort must be made to satisfy them.

● Highly interested, less influential stakeholders should be kept informed. Active

engagement is required and often these stakeholders are the ones to work out details of

the project.

● Less interested, highly influential stakeholders should be kept satisfied. Active

engagement is not required, but the team should focus on satisfying their needs.

● Less interested, less influential stakeholders should be monitoring the project and fill a

more observatory role.

Traditionally a CEO or an equivalent role should be labelled as less interested, but highly

influential as they are often not the experts to the project, but will see the result of its success or

failure. MINDHASH CEO Lasse Licht would be better labelled as a highly interested and highly

influential stakeholder, since he has quite some expertise on this topic and has appointed himself

as point of contact. WIth similar logic it follows that other MINDHASH employees are highly

interested, but less influential stakeholders. They are looking to continue this project afterwards

and are experts in their fields. But of course the failure or success of this project is not their

responsibility. Finally, Le Viet Duc is less interested and less influential, since his role is to

supervise this project from an academic perspective and is other than that completely detached

from this project and its successes.

Project Management Approach

Part of the proposed workflow has been laid out in terms of responsibilities. Another important

factor to consider is the project management approach. Taking the responsibility and task

division into account, one quickly looks at an agile project management approach. Agile is

popular because it will bring about the most efficient way to execute software projects in terms of

costs, quality and time under continuously changing circumstances and requirements (Ciric et al.,

2019). This project will be executed by a small and nimble team, working closely together.

Moreover, all members of this team have worked with scrum in the past as part of the bachelor’s

15

\

programme. A common scrum methodology is a sprint-based method, where design and

product-level requirements can be revised and implemented in two to three week sprints. Given

that the scope and requirements of this project are not expected to change much plus the

relatively short execution time (about eight weeks), a sprint-based method does not make a lot of

sense. Therefore, this project will be managed around an agile kanban method. In layman’s

terms, one long sprint. This has the benefit of an agile methodology, but allows for more fluid

execution across different length timespans. Agile requires a product owner to be appointed.

Naturally, MINDHASH’s Lasse or another to be appointed employee will fulfil this role.

A common tool to manage software projects is Atlassian’s Jira. Since we are opting for a kanban

methodology, Jira is a good choice because of its interactive kanban board. Moreover, all group

members are familiar with the software. Jira is accessed by all five group members through an

educational licence.

Bloch et al. (2012) have determined four dimensions of project success: strategy and stakeholder;

technology and content; building teams and capabilities; and project progress. Implementing

their work, we would like to ensure that we stay on top of these dimensions. This gives us a

formal and verifiable metric for measuring project success. For now, let’s address each dimension

in context. Strategy and stakeholders have been covered in Stakeholders. We have given

plentiful thought to our strategy and we have also identified our primary stakeholder and product

owner to be involved on multiple levels. The technology of this project is new to most of us,

especially LiDAR. This might form an obstacle, since its trivial aspects may take us more time than

it would an expert. As discussed in Responsibilities, we believe Group 6 to be a very capable

team, based on prior working experiences and expertise on relevant topics. This makes us

confident in building a capable team. Lastly there is project progress. This can not be measured

as easily as would have been with a sprint methodology, as then requirements and goals could

be set ahead of a sprint, multiple times during the project’s life span. We measured project

progress in ratios between expected time and spent time on requirements. It is hard to define a

mitigation strategy in case we fall behind. Risks and their mitigation strategies will be discussed

further in Risk & Feasibility.

16

\

Communication

WhatsApp & Microsoft Teams
Digital communication between the members of Group 6 primarily took place on WhatsApp and

Microsoft Teams. For both media private groups have been created. Microsoft Teams is the

medium used for online meetings, whereas WhatsApp is reserved for all other matters of

communication. Being able to have online meetings is not a matter of convenience as much as a

necessity. Malek Assaad was abroad and Omar Elkady has only been able to attend physically

from 19 September on.

Slack & Google Meet
For communication between them, Group 6 employed the software MINDSHASH uses internally.

These are Slack and Google Meet. For quick questions, planning meetings and otherwise

non-urgent matters Slack is ideal, since all employees and group members have access to each

other. Because the MINDHASH office is in Hengelo, commuting there is often rather time

consuming. Therefore and for the same reasons as mentioned above, options for online

meetings are necessary. MINDHASH is used to using Google Meet for their internal meetings and

stand-ups and to that end, this project will employ Google Meet as well.

17

\

Risk & Feasibility

Risk Analysis

Projects are risky. They cost money, time and other resources. This allows a chance that they go

over budget, don’t meet deadlines or will fail altogether. For these reasons it is important to

acknowledge possible risks and ideally pose mitigation strategies if these risks fall through. In

this section we will omit project risk, reputational risk and change risk. Project (budget) risk is

irrelevant for the reason that no budget is specified, the hardware is already allocated and not

used in different MINDHASH projects and Group 6 is not financially compensated. Reputational

risk is also minimal, since after completion MINDHASH can choose to deploy, cancel or further

develop this project in-house without third party knowledge. For the same reason, we do not

cover change risk; the risk of this project disturbing current (business) practices.

Human risk
Human risks are those that might harm the project by human error or the absence of a key

individual halting progress across the board. In the latter case, this should not form a hard

problem. The members actively worked on various parts of this project in parallel, but not one

task has sole responsibility. This means that we can assume that sickness or leaves of absence

would slow, but not halt, said tasks. In case a point of contact at MINDHASH is unavailable, we

assume other employees to be able to (temporarily) fulfil the role of product owner. This risk

needs no defined mitigation strategy for the aforementioned reasons.

Another human risk is that of man made errors in documentation or code. In the case of

documentation, we expected at least three and ideally five group members to proofread all

documentation that is shared with MINDHASH and vice versa to ensure clear and understandable

communication between all parties. In the case of development errors, this is harder to mitigate.

Scope creep risk
A risk hardly influenced by sickness or other human error is scope creep risk. This is the risk of

the scope of the project, its objectives and/or its requirements pushing work beyond the

18

\

estimated amount and resulting in the project going over time or over budget. Often this is

caused by changing or unclear requirements that push the budget or deadlines of a project out

of bounds (Kendrick & Tom, 2015). We have mitigated this by keeping close contact with

stakeholders and establishing well-defined requirements. Extra care has been taken when

altering goal or domain level requirements and required confirmation from all requirements

owners.

Black swan risk
In every project there persists the risk of unforeseen events altering the course of the project or

its success in one way or another. We call these events black swan risks. Black swan risks are

almost exclusively external to the project, like the COVID-19 pandemic or the Russian invasion of

Ukraine this February. These events in particular do not pose a threat (not anymore, in case of

COVID-19). Another pandemic or a surprise return of COVID-19 would not impact this project too

much in terms of implementation. Working remotely is almost de facto, after all. In that case,

however, testability will almost vanish when less people will make use of the bicycle lanes we

would be testing on.

Impact & Feasibility Audit

Requirement Feasibility
Requirements are only valuable to a project’s success if it is feasible. Especially when the

stakeholder or any other requirements owners are not sufficiently proficient in the topic, it could

happen they demand something that cannot be achieved at all, or within the set time frame or

budget. To this end, it is important to audit the feasibility of the set Requirements. Ideally this

happens early in the requirements specification. Established - but not met - requirements may

lead to a lack of trust in the implementing bodies.

The requirements that we have established are subjective and abstract by nature. This makes an

objective audit of their feasibility rather difficult. Currently, the only tool we possess to assess this

is common sense. Luckily the stakeholders and group 6 hold a certain expertise on the different

matters. Sebastiaan, being proficient with ML, has provided many insights that we were able to

take into account. With his experience with web applications and cloud hosting, Jasper covered

feasibility insights over those respective requirements. Moreover, the requirements have been

19

\

set up in collaboration with MINDHASH and they did not see any major problems that may halt

this project down the line. This lets us be confident in our requirements specification and do not

expect major hiccups in implementing them.

Time Feasibility
For the same reasons as we considered the requirements feasibility of this project, we will look at

the feasibility of the time planning. Though it cannot go unmentioned that this is rather more

difficult. It is hard to define a time planning for the realisation of the system, both its hardware and

software. This brings a certain level of unpredictability and hurts the feasibility of this project. To

ensure we stay on top of things, close collaboration with MINDHASH was required and as issuers

and experts, we trusted them in part to avoid scope creep drawing out our planning. It has

previously been determined that the web app is not particularly complicated, no new or

otherwise unfamiliar or immature technologies will be applied and the web app was liberally

planned out, with an extra week to spare. We do not see any feasibility problems arising from the

web app’s planning.

20

\

Machine Learning & Sensing

Subsystem Overview

The data pipeline begins at the embedded system, the computer to which the LiDAR setup is

connected by wire. The Webapp is connected to the embedded system through wireless

connection or more precisely through a firebase database. Between the user and the three

actors, calls and returned messages travel to provide full functionality. The following sequence

diagram shows how the user and other systems interact between one another and the sequence

of operations.

Figure 1: Sequence diagram for interacting with the system

21

\

Figure 2: Activity diagram for interacting with the system

Figure 2 shows the activity diagram for how the user/client interacts with the system and how

decisions are made by the system throughout the process. What is notable is that there is not any

network traffic when no cyclists are detected by the LiDAR sensor. Whenever there is a cyclist,

the data is then passed to the database through a firebase database.

Data is collected in 0.5 second intervals from the lidar sensor (about 50,000 points) then stored

in a file on the computing device. This frame is then run through the model for classification and

detection. The result from the model is then sent to the current session in the Firebase so that

the web application can display the results live.

22

\

Scientific Background & Contribution

We propose and display the feasibility of a method by which it is possible to detect and classify

bicycles with a solid state LiDAR module. Furthermore, in the process of doing so, we have

created a valuable dataset containing 620 labelled data frames, each consisting of approximately

50.000 data points, in which bounding boxes have been drawn for all bicycles in a frame. Such a

solid state LiDAR bicycle dataset is unique in the field. Apart from this, a solid state LiDAR point

cloud collection tool was created for the Livox Mid-40 unit, which could be used by researchers

around the world.

Thirdly, we have shown that high Average Orientation Similarity (AOS) and mean average

precision (mAP) scores, higher than those reported in the original paper of the approach used

(Lang et al., 2019), can be obtained with the proposed architecture with only a limited dataset

available.

Lastly, we have shown that with this data, it is possible to create a framework providing valuable

insights regarding, for this use case, the detection and counting of bicycles on a bicycle lane.

Design Choices

When designing the system, one key aspect considered was the relation between the sensor and

the traffic lane. Prior to data collection or testing, it was known that the Livox Mid-40 is limited to a

38.4 degree cone starting from about one meter away from the sensor. These are some

limitations of using solid state lidar as opposed to its rotational counterpart. Three initial designs

were proposed as can be seen in figure 3.

23

\

Figure 3: Sensor Placement Design

After testing the sensor using various positions such as the ones seen in the figure above, it was

determined that the third design would be the most suitable. This is because the first obstructs

traffic, and the second only allows for a very narrow picture of the traffic lane. The third design

provides a long tunnel of vision pointed down the lane. This allows for points to be generated of

the objects that are within point cloud data generated. Furthermore, this positioning was

considered as the most adaptable to a real environment. It allows for simple and mobile

installation of the device as long as it is provided with power.

After having decided on this design, the next steps were to refine the positioning of the sensor

even more. In order to ensure quality and consistency, a standard was set for the positioning of

the sensor. After some testing it was determined that the sensor would be rotated 67 degrees

from the traffic lane. Additionally, the sensor would be 100 cm from the ground and 10 cm from

the edge of the lane. This was decided in order to optimise the cone of vision of the observed

traffic.

Data

As it became clear that it was necessary to create a model, the team began the process of data

collection, labelling, and processing. In order to generate value from data it is important to ensure

that it is of high quality (Cai & Zhu, 2015). The team made many considerations during each step

of the process to achieve quality data. This is important because it will be used to train and test

24

\

the model for the purpose of real world functionality. Therefore, it must reflect the data that the

system will eventually operate on.

Data Collection
Data was collected using the design proposed in the placement of the sensor above. The sensor

is able to capture data at a rate of approximately 100,000 points per seconds. Based on initial

tests, it was found that collecting data for a total of 0.5 seconds provides a resolution for which a

human can rather consistently identify bicycles. The idea is that if a human is able to detect these

bicycles by looking at the raw point cloud, then a machine learning model should be able to do

this as well. The collection interval could be compared to the exposure time of a camera: the

longer the exposure time, the more points are collected in the frame and thus the higher the

resolution. It was found that 0.5 seconds of collection time furthermore enables the system to

consistently and reliably capture bicycles in a single frame. Although some trailing occurs (the act

of a trail of points behind a bicycle being present due to the exposure time) dependent on the

speed of the bicycle, this trail is not of such size that within a frame, no start and end of a bicycle

object can be determined.

In addition to the LiDAR sensor, a camera was also used when gathering data. This choice was

made in order to aid the process of labelling the data. It was found that the point cloud data can

often be hard to decipher and thus the photos would supplement the point cloud data for

clarification.

A proprietary program was made for collection. This program takes in data from both a camera

and the LiDAR simultaneously and takes a snapshot of the current frame of data when the user

presses a button. The program was designed this way such that frames with the desired content

could be saved on-demand by the operator of the attached computer. Thus, data was collected

efficiently to include quality data frames that had data of interest which reduced time spent in

post-processing.

25

\

Figure 4: Data being collected

This took place in the area between the Ravelijn and Citadel buildings which intersects the De

Zul road. It was chosen to collect data in this location due to the high amount of bicycle traffic in

addition to the availability of a nearby power source. By the end of the session a total of ~1000

frames of data were collected.

Data Labelling
After having collected the data, the next step was to label it for training and testing purposes. The

objective of labelling frames of point cloud data is to draw bounding boxes around the object

which the model should be trained to detect. A bounding box is simply a three dimensional box

which surrounds exactly the dimensions of the object such as in figure 5. This box then has a

label which indicates what is contained within it. For the purpose of this project, bounding boxes

were made using the ‘bimo’ (bicycle/motor) label. They were only made around cyclists and rarely

scooters that were in the frame.

In order to create these bounding boxes, a tool in Matlab was used (see Matlab). The process of

labelling using this tool was not very complicated. First, the user must import the frame of data

and create the bounding box. Next, it was necessary to change how the point cloud points were

colored in order to better recognize the objects in the frame. Finally, bounding boxes were placed

26

\

and adjusted to any cyclists that could be recognized. If there were no recognizable cyclists in

the frame, no bounding boxes were placed.

Figure 5. Labelled Data Frame

The bounding boxes created during the labelling process were intentionally chosen to be

axis-aligned, that is to say that each of the three dimensions of each box is parallel to one of the

global axes. The choice to label the data as such helps the group not only label faster but it also

allows the centroid-based tracking algorithm to function (further details in Tracker). Another

positive of axis-aligned bounding boxes is that they do not require matrix operations to calculate

the vertices and thus run faster during runtime, reducing delay between inferences. However,

some data about the traffic may be lost when there is no rotation to the bounding boxes,

detrimental only if bicycle orientation is important, which it isn’t for the purposes of this project.

Data Processing

Preprocessing
As the range of the sensor used is reported to be 260 meters (Livox, 2019), the captured point

cloud frames consist of more points than necessary to detect nearby bicycles. As to decrease the

computational complexity of the machine learning model, the point cloud is cropped according to

the below table. The chosen domains for the x, y, and z variables are such that a 3D domain is

created of such size that nearby bicycles ahead of the sensor will remain in the point cloud with a

certain margin, while further away datapoints (such as those of trees in the background) are

discarded.

27

\

Variable x-axis y-axis z-axis

min 0.0 -39.68 -5.0

max 69.12 39.68 5.0

step 0.16 0.16 -

Table 1: Point cloud range definition

Important for the interpretation of table 1 is the definition of the axes in space with respect to the

LiDAR sensor. The x-axis goes ‘into’ the front-face of the LiDAR sensor and hence the x-axis is the

axis determining the depth of an object (front or back) as seen from the front-face of the lidar. The

y-axis is the axis which defines what is ‘left’ and ‘right’, and together with the x-axis forms a

horizontal plane in space. Lastly, the z-axis defines what is ‘up’ and ‘down’ with respect to the

LiDAR, and creates a vertical plane in space together with the x-axis, along the x-axis. figure 6

and figure 7 visualise the axes in space with regard to the LiDAR sensor.

Figure 6: Orientation of axes with respect to the position

of the LiDAR sensor in space

Figure 7: Orientation of axes with respect to the LiDAR

sensor in space

As shown in table 1, the point cloud is cropped in such a way that only points that are no further

than 69.12 meters away (x-axis component of the distance) from the front of the LiDAR sensor,

that are no more than 39.68 meters to the left or to the right of the sensor (y-axis component)

and are no more than 5 meters lower or higher compared to the height of the sensor (z-axis

28

\

component). Furthermore, the resolution along both the x- and y-axis is set to be 0.16. These step

values define the size of the voxels in which the point cloud will be organised, as per the common

paradigm such as implemented in, among others, Complex Yolo (Simon et al., 2019), AVOD (Ku et

al,, 2018) as well as the PointPillars encoder (Lang et al., 2019) used in this work.

The difference between the cropped and uncropped point clouds can be observed in the

example given in figure 8 (uncropped) and figure 9 (cropped).

Figure 8: Point cloud before cropping Figure 9: Point cloud after cropping

Data augmentation
Data augmentation is used to further enhance the quality and quantity of the dataset. The

augmentation methods used are a way to decrease the risk of overfitting by attempting to

mitigate certain biases, such as the exact position of a bike on the road, the size of bicycles and

the direction from which bikes are observed. The augmentation methods used are rather

standard (Lang et al., 2019; Zhou & Tuzel, 2018; Yan et al., 2018) and have been proposed in

literature numerous times. According to literature (Zhou & Tuzel, 2018; Yan et al., 2018), data

augmentation such as the techniques used in our work are critical for having a model perform

well on the KITTI dataset (Geiger et al., 2012), which is a dataset containing labelled point clouds

from a rotational LiDAR module.

Firstly, up to ten bicycles are randomly added from one frame to another frame to increase the

total number of bicycles in a frame. This way, the model has more bicycle “examples”, and hence

model performance improvement is expected. Although not applicable to the implementation in

this work, as the model in this work is only trained to classify a single bicycle, one could

29

\

furthermore use this technique to alleviate class imbalance problems by artificially adding more

objects of a certain class to frames by randomly sampling these objects from other frames.

However, by having the exact same point signature for an object in multiple frames (that is, the

same exact object being in multiple frames), the risk of overfitting increases.

To mitigate this overfitting risk to an extent, further augmentations are applied by which the data

becomes more varied and hence the model is less prone to introducing biases in the model for a

common pattern specific for this dataset. The standard augmentations used in this work as used

in literature (Lang et al., 2019; Zhou & Tuzel, 2018; Yan et al., 2018) are random flipping along the

x-axis, random rotation along the z-axis [,], random scaling by at most 5% and random− π
4

π
4

translations by [0.2, 0.2, 0.1] metres along the x, y and z axes respectively. An example of the

effect of the augmentation applied to a random point cloud data frame can be seen in figure 10

and figure 11.

Figure 10: Point cloud before augmentation Figure 11: Point cloud after augmentation

Model

Architecture & Related Research
To be able to robustly detect bicycles with acceptable precision, a well designed machine

learning model architecture is required. In literature, there are a number of model architectures

proposed for the detection and classification of objects in space.

30

\

Context
For the detection and classification of objects in a point cloud, literature suggests two types of

inputs – commonly referred to as modalities – to the model. The first is simply the points in the

point cloud itself without any additional context, which is the modality used in for example

VoxelNet (Zhou et al., 2018), SECOND (Yan et al., 2018) and PointPillars. On the other hand,

certain models use additional context by means of 2D images taken by a camera, which more

often than not allows one to achieve a higher accuracy in standard (well lighted and fair weather)

conditions as compared to the models that do not make use of such additional context. Model

architectures that make use of such additional camera input are MV3D (Chen et al., 2017),

F-PointNet (Qui et al., 2018) and Roarnet (Shin et al., 2018) to name a few.

In addition, there are two main performance contexts with regard to the detection and

classification of objects in point cloud data. One can namely detect objects from a bird's eye view

(BEV) or from a 3D view perspective. BEV and 3D view benchmarks appear to be of similar

popularity for benchmarking rotational LiDAR point cloud data performance (Zhou et al., 2018;Yan

et al., 2018;Qui et al., 2018;Shin et al., 2018). As the unit used for this system is solid state rather

than rotational, it is inherently limited to a 3D view benchmark, which often performs slightly

worse than BEV benchmarks (Lang et al., 2019), as no BEV can be constructed with the limited

FOV and range of the solid state LiDAR unit used.

Model choice
With the goal of the system specifically being investigating the feasibility of using a solid state

LiDAR itself, it was decided to pick a model architecture that does not rely on context other than

the point cloud data itself.

Furthermore, as to provide scientifically relevant results, it was chosen to narrow down the choice

of model architecture to models used for the system to only those that predict bounding boxes

around detected objects in space rather than solely detecting the number of them. This way, the

approach used in this work can be applied to other applications as well, such as for example the

detection of bicycles in space in autonomous vehicle applications.

To be able to make a decision on what model architecture to use for the system, three state of

the art models that use only point cloud data frames as an input were considered. These models

have all been benchmarked with the KITTI dataset, introduced by Geiger et al. in 2012. The KITTI

31

\

dataset is a well known dataset consisting of, among other things, point cloud data captured with

a Velodyne rotational LiDAR sensor attached to the top of a vehicle. Table 2 shows the

performance of these models on said KITTI dataset for the 3D detection benchmark on easy

mode. The difficulty mode, in this case easy mode, tells one something about the minimal

bounding box height measure of occlusion and maximum truncation percentage of objects. The

exact values for these parameters for the different modes has been neatly presented by Luo et

al. in their 2018 paper, and can be seen in Table 3.

Method Modality mAP Car (easy) mAP Pedestrian
(easy)

mAP Cyclist
(easy)

VoxelNet (Zhou
et al., 2018)

Lidar (point cloud
data)

0.7747 0.3948 0.6122

SECOND (Yan et
al., 2018)

Lidar (point cloud
data)

0.8313 0.5107 0.7051

PointPillars (Lang
et al., 2019)

Lidar (point cloud
data)

0.7905 0.5208 0.7578

Table 2: Performance of different model architectures on KITTI dataset (easy mode) 3D detection benchmark. Adapted

from Lang et al. in their 2019 paper

Difficulty Minimum bounding
box height

Maximum occlusion
level

Maximum truncation

Easy 40px Fully visible 15%

Moderate 25px Partly occluded 30%

Hard 25px Difficult to see 50%

Table 3: KITTI dataset difficulty levels with regard to maximum truncation- and occlusion levels. Adapted from Xie et al.

in their 2018 paper

As can be seen from table 2, the PointPillars model architecture is able to achieve the highest

mean average precision (mAP) among the three candidate architectures on the KITTI 3D

detection benchmark (easy mode), which is the reason why this PointPillars model architecture

was chosen as the model used in the system. The reason why the easy mode benchmark was

32

\

used to base the architecture choice on is two fold. For one, regarding bicycles, the difficulty

level simply appears to scale the resulting mAP rather equally among the model architectures, as

presented by Lang et al. in 2019, hence not altering the decision made based on the performance

for detecting and classifying bicycles. Secondly, as the custom dataset created for this work does

not have a set level of maximum occlusion or maximum truncation, it is not possible to assign a

difficulty level one can use for comparison with other work. From empirical analysis of the novel

created dataset, there certainly is (significant) occlusion and to a lesser extent, truncation present.

However, due to a lack of quantification of said occlusion and truncation levels, it is only fair to

compare results from our work with the KITTI benchmarks on easy mode. At best, our novel

dataset is of greater difficulty, which only strengthens claims regarding the robustness of the

model when compared to benchmarks on easy mode in literature.

PointPillars
The PointPillars model architecture, proposed by Lang et al. in 2019, is made up of three distinct

parts, as can be seen in figure 12, which was presented in the original paper (Lang et al., 2019).

Figure 12 An overview of the PointPillars network architecture

The first part of the network architecture consists of a feature encoder network which takes a

point cloud as an input, and converts this to a sparse pseudo image. Next, a 2D Convolutional

Neural Network consisting of three channels is used to convert said pseudo image into a higher

level representation. Lastly, a detection head (single shot detector, SSD) is used to detect and

regress the 3D bounding boxes around the detected objects.

33

\

Pillar Feature Net
To be able to convert the point cloud data to a pseudo image, the point cloud is first discretized

into an evenly spaced grid in the x-y plane, creating so-called pillars. The number of non-empty

pillars in a point cloud data frame P as well the number of points per pillar N are defined as

hyperparameters. Note that in case there are more points than allowed in a pillar or pillars in a

frame, points or pillars are randomly sampled to fit the requirement. In case there would be too

few points in a pillar or frame, zero padding is utilised. In addition, a bin size (also referred to as

voxel size) is defined to reduce the point cloud to having only one point per voxel, but only in the

x-y plane as we use pillars. This is done to reduce the computational complexity of training as

well as inferring the model. After this, the points in the created pillars are augmented, resulting in

the augmented lidar points having exactly 9 dimensions, creating a (D,P,N)-sized tensor.

Following this, a simplified PointNet is used where a linear layer, Batch Norm (Ioffe et al., 2015)

and ReLU (Nair et al., 2010) are applied in order to generate a (C,P,N)-sized tensor. Next, a max

operation is applied over the channels, creating an output tensor of size (C,P). The features

defined in this tensor are then scattered back to the locations of the original pillars to create a

pseudo-image. The implementation used is exactly as proposed in the original paper (Lang et al.,

2019), hence the number of output features from the network C = 64.

2D-CNN
The 2D-CNN backbone proposed in the utilised PointPillars (Lang et al., 2019) paper is similar to

the one used in VoxelNet proposed by Zhou et al. in 2017 and consists of a top-down network

producing features as well as a network performing concatenation and upsampling of the

produced top-down features. The implementation of the networks is furthermore exactly as

proposed in the original paper (Lang et al., 2019), namely, the networks each consist of three

individual blocks, each of size (S, L, F) of sizes: (S, 4, C), (2S, 6, 2C) and (4S, 6, 4C) respectively,

where S = 1 denotes the stride used, L denotes the number of 3x3 2D convolution layers in the

block and F denotes the number of output channels. Next, each block is upsampled by the steps:

(S, S, 2C), (2S, S, 2C) and (4S, S, 2C) respectively, after which the features of these steps are

concatenated, providing 6C features for the detection head.

Detection head
The detection head used in the system is furthermore as proposed in the original PointPillars

paper (Lang et al., 2019), where a Single Shot Detector (SSD), proposed by Liu et al. in 2016. SSD

34

\

is greatly useful, as it is able to localise (bounding box regression) and classify objects in a single

forward pass. An overview of the SSD architecture with an example input of size 300x300x3 is

given in figure 13.

Figure 13. An overview of the SSD architecture with an example input of size 300x300x3.

Implementation
The model was implemented in MatLab and is an adaptation of the MatLab PointPillars

implementation (Matlabengine, 2022). figure 14 consists of an overview of the MatLab

implementation of the model architecture.

35

\

Figure 14. MatLab PointPillars (Lang et al., 2019) implementation overview. Sourced from the MatLab website (“Lidar

3-D Object Detection..”, 2022)

The architecture shown in Figure 14 corresponds exactly to the model architecture proposed in

the original PointPillars paper (Lang et al., 2019), hence its technical details correspond with those

presented in above sections regarding the model architecture, as well as the original PointPillars

paper.

As a ‘sanity check’, figure 15, taken from the “Deep Network Designer” tool in MatLab with the

used model loaded into it, one can see that the input to the detection head consists of three

batchNorm layers with 128 features each, this corresponds to the theoretical number of features

fed to the detection head, namely 6C, where C was defined as being the number of output

features from the Pillar Feature Net, which was defined as being 64 (128x3 = 64x6).

Figure 15. Network at concatenation of features after upsampling.

The MatLab Engine API (“Install MATLAB Engine API for Python…”) is used to interface MatLab

with Python, required to interface the model with the data collection part of the application as

well as the forwarding of detected objects to the WebApp backend.

Performance metrics
In literature (Lang et al., 2019; Zhou & Tuzel, 2018; Yan et al., 2018), for the detection and

classification of objects in point clouds, the two standard metrics are the Average Orientation

Similarity (AOS) and mean Average Precision (mAP). The AOS metric was introduced by Geiger et

36

\

al. in their 2012 paper, the same metric which introduced the widespread KITTI benchmark

dataset. The AOS is defined as follows:

𝐴𝑂𝑆 = 1
11 ×

𝑟∈{0,0.1,..,1}
∑ 𝑚𝑎𝑥

𝑟˜:𝑟˜≥𝑟
𝑠(𝑟˜)

, which is the recall in which detected bounding boxes are deemed correct when the𝑟 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

overlap (intersection over union) with the ground truth bounding box is larger than the set

threshold (in case of the threshold for the system, this is 0.5). Furthermore, the recall r is a

normalised cosine similarity . in which is the object set𝑠(𝑟) = 1
𝐷(𝑟)| | ×

𝑖∈𝐷(𝑟)
∑

1 + 𝑐𝑜𝑠∆
Θ

(𝑖)

2 δ
𝑖

𝐷(𝑟)

of all detections for recall rate r and (i) is the difference between the orientation of the ground∆θ

truth and the predicted orientation, for the ith detection. The AOS is a powerful metric as it does

not only require a predicted bounding box to overlap with the ground truth bounding box by at

least the threshold percentage, it also takes into account the recall and the orientation of the

predicted bounding box as compared to the ground truth.

Next, the mAP is defined as being , where N is defined as the number𝑚𝐴𝑃 = 1
𝑁 ×

𝑐 ∈𝑁
∑

𝑇𝑃
𝑐

𝐹𝑃
𝑐
+𝑇𝑃

𝑐

of classes.

Training and Results
The training of the model is done in MatLab, and training was executed on the University of

Twente remote desktop, which is equivalent to a small-scale cluster. The results of the different

training runs done are shown in table 3.

37

\

Epochs
Batch
size

Train/te
st split

Contains
empty
frames

Confidence
threshold

IoU
Threshold AOS mAP Dataset size

1 3 90/10 Yes 0.25 0.5 0.0055268 0.0055430

60 3 90/10 No 0.25 0.5 0.47576 0.47644
300 (minus
empty frames)

60 3 90/10 Yes 0.25 0.5 0.68677 0.68684 620

160 3 90/10 Yes 0.25 0.5 0.78774 0.78778 620

175 3 90/10 Yes 0.25 0.5 0.84523 0.84525 620

200 3 90/10 Yes 0.25 0.5 0.85762 0.85764 620

220 3 90/10 Yes 0.25 0.5 0.86962 0.86965 620
Table 3. Results obtained from different training runs, the best result is marked in green

The train/test split utilised for all frames is 90%/10%, this is done as to maximise the potential of

the rather small dataset at hand. Furthermore, all evaluation metrics are obtained using the test

split.

Training was started with a dataset of 300 labelled images without empty frames and with 60

epochs, as proposed in the MatLab PointPillars implementation (“Lidar 3-D Object Detection..”,

2022). The mAP and AOS obtained from this training run was acceptable (48%, see Table 3) for

the purpose of counting bicycles (one could use the error to possibly give a range of bikes that

passed, given the error is constant enough), although not optimal.

Notably, as the AOS and mAP have almost exactly the same value, this indicates that the main

problem of the model is in fact false positives.

In order to improve performance, experiments were conducted with more data as a way to

reduce the risk of overfitting, more epochs as a way to improve the model performance, as well

as training the model with empty frames as a way to potentially decrease the amount of false

positives. One can see in Table 3 that when significantly increasing the dataset size as well as

training with empty dataframes, the model AOS and mAP improved drastically to 69% mAP and

AOS. Still, the main problem of the model remained the detection of bicycles in places where

there were in fact no bicycles; false positives.

Further increasing the amount of training epochs appeared to increase performance on the test

set, up to a certain point. It was observed that from approximately 175 epochs onwards, the AOS

38

\

and mAP of the model only very slightly increased further. This observation has been visualised in

Figure 16. Because the AOS and mAP of the model on the test set did not appear to increase with

any significance after 220 epochs anymore, it was decided to not train the model further than

this.

Figure 16. mAP after training for a number of epochs

Figure 17. Ground truth bounding boxes Figure 18. Bounding box predicted by model

After all, an AOS and mAP of 0.87 was achieved on the test set, which is in itself higher than the

mAP and mAOS reported in the original PointPillars paper (Lang et al., 2019), hence providing

39

\

evidence supporting that it does in fact seem feasible to utilise Solid State LiDAR data for robust

detection of bicycles, as well as supporting the quality of the collected dataset. To provide an

example of the capabilities of the model, an example prediction done by the model on a point

cloud data frame from the test set is given in Figure 18, the ground truth of said frame is provided

in Figure 17. Furthermore, notably, in certain cases when the labeler forgot to label certain

bicycles in a frame, the model as in fact able to detect these bicycles and predict a bounding box

around these, as can be seen in the prediction made by the model for the frame shown in Figure

20 (right side of frame, as there is a false negative on the left side of the same frame regarding

occlusion). The ground truth bounding boxes of said frame are shown in figure 19. The fact that

the model appears to be able to detect bicycles that were forgotten to be labelled by the labeler,

indicated that the model might be used as an assistance for labelling future point cloud data

frames.

Model limitations

Figure 19: Ground truth bounding boxes Figure 20: Predicted bounding boxes by model;
containing one false negative (left) and two missed

bicycles (right)

Despite the model proving to be very promising given its high AOS and mAP, there are still
certain limitations to its abilities, especially in case of (partial) occlusion. This limitation can be
clearly seen in the prediction made by the model in Figure 20 (left side), where despite correctly
having classified two bikes that were not labelled by the labeler (right), the partially occluded
bicycle behind two other bicycles was not detected as being a bicycle. Likely, given more partially
occluded labelled training data, the model would perform better, hence specifically adding
occluded bicycles could be a useful addition to the dataset in future work.

40

\

Tools

Matlab
Matlab was one of the fundamental tools used throughout the development process. To begin,

Matlab’s LiDAR toolbox has a visualizer that was used to visualise LiDAR frames, whether

captured within the program or imported from csv files. What makes Matlab a versatile visualizer

is its ability to change colour schemes based on LiDAR information. Multiple colour schemes

depending on resolution, distance and reflectivity allowed the group members to better perceive

the information captured by the sensor. This kind of visualisation was not only important for

manual testing of the setup, but also for the labelling of data needed to train the machine

learning model.

Matlab’s LiDAR toolbox is equipped with a labelling tool, which allowed the group to label frames

more quickly. A proprietary script was made to capture frames from the LiDAR sensor as .csv files

and then import them into the labelling tool, which allowed the group to manually draw a

bounding box around each bicycle in the frame. The tool would then export the labelled frames

as a Matlab file, which was in turn used to train the machine learning model.

The group’s final use of Matlab was the most essential part of the development process, namely

the training of the machine learning model. Matlab is not only pre-equipped with all the tools

needed to process data labelled through it, but also has support for standard machine learning

libraries such as PyTorch and TensorFlow. The group decided to stick with the Matlab ecosystem

because there exists many and comprehensive materials available for learning and applying skills

in its suite of tools.

GitLab
There are not many solutions for source code management out there, but it has been agreed

upon to use GitLab. Managing code with the help of git’s tools made it possible to collaborate

and split tasks more hassle-free. Utilising git’s branches and version control opened the

possibility to iterate on code, create different versions and restore working files seamlessly. For

example, multiple versions of the frame capturing tool were created, one that needed to be

operated manually for more precise frame capturing and one that could be toggled on and off for

41

https://www.mathworks.com/products/matlab.html

\

automated collection; with the help of branching, multiple developers were able to work

simultaneously to save time. Milestones and issues were also intended to be used but due to the

course the development process took and the exploratory nature of it, it was difficult to make

good use of them.

Visualisation
Visualisation during development has been a recurring problem that we had to tackle. Livox

developers have provided proprietary software to show the output of the sensor but it is just that.

It has no api or methods to hook into it besides exporting .csv files and reading them using other

programs such as Matlab. A visualizer had to be developed to make up for the shortcomings of

Livox software. Open3D was the Python library used to create the visualizer because it provided

a voxel based renderer that could handle 100,000 point data frames. It was used during the

capturing process to quickly and efficiently read .csv files to see what was being captured

without jumping between software solutions. However, during the labelling process, Matlab’s

visualizer was used instead because it included a built-in labeler and was more equipped to

export labelled frames.

UT Remote Desktop
One tool that was used extensively was the university’s remote access tool to university hosted

hardware. University machines are equipped with hardware and software that are built for

extensive data crunching that are ideal for the purpose of model training and inference. These

tools gave the group autonomy to quickly reiterate on models by providing power equivalent to

two NVIDIA GeForce RTX 2080 GPUs which were otherwise unattainable. Moreover, most

existing projects used for LiDAR equipment were built for Unix based operating systems and

having machines that could run them without virtualization allowed for more efficient workflows.

Tracker
One of the problems associated with the counting problem is being able to track which bicycles

were counted and which were not. In any given two succeeding frames captured by the LiDAR

sensor, one and the same bicycle may appear in both. This is either due to lower cycling speed or

high lane traffic. This may cause the system to count said bicycle multiple times, artificially

inflating traffic count and decreasing the accuracy of the final solution. This problem prompted

the creation of a custom tool for tracking bicycles across multiple frames. The solution is a Python

42

https://www.nvidia.com/nl-nl/geforce/20-series/

\

class forked from the Centroid-Based_Object_Tracking repository by lev1khachatryan, which was

then adapted to support the tracking of 3D bounding boxes. The algorithm assigns an ID to each

bicycle in frame and uses its centroid (the average of bounding box vertices) to follow it from one

frame to another. Unfortunately, this method of tracking only works on higher frame rates

because it is difficult to tell whether a certain bike is the same from a previous frame or a new

one given a long enough delay in between two frames; the model is only able to make inference

every 2 seconds. This is a limitation of LiDAR data because there are hardly any identification

details for bicycles besides position and speed. It was concluded that without a secondary model

running to identify bicycles, it would not be feasible to attain a reliable tracker. This is a source of

inaccuracy for the project.

Data Collector
The data collection tool is a tool custom built by the group to quickly and efficiently collect data

for labelling. The tool captures a full frame (50,000 LiDAR dots) over half a second from the

LiDAR sensor, along with a picture from a camera. Too short of a capturing window leads to

dispersed data points (i.e., lower resolution images) whereas a longer window leads to ghosting

(i.e., motion blur). It was discovered that a half second window is a feasible middle ground that

balances between resolution and the ghosting effect. The data collection tool is built with the

help of the Livox Python SDK and OpenCV. It has two modes for operation, manual and automatic

collection. Manual mode requires a user to press a button every time a new data point is wanted

whereas the automatic mode only requires toggling on and off and the system will automatically

collect data points when it is on. These two modes allow versatile methods for data collection

where one can let the system automatically collect or can pick and choose when to collect a data

point. These modes can help balance the number of data points for each machine learning

categorization and avoid biases.

Materials
Many of the materials used by Group 6 were already in the possession of the team members or

were otherwise supplied by MINDHASH or the university. However, for the purpose of analysis

and replication it is good to understand the materials involved and their costs. These costs can

be seen below in table 5.

43

https://github.com/lev1khachatryan/Centroid-Based_Object_Tracking

\

Material Explanation Cost

Livox Mid-40 The sensor around which this project revolves.
Used to gather data for testing as well as
provide data to the ML model.

€606.80

Camera Sensor Used to gather data for the purpose of ensuring
high quality data labelling.

€40.00

Tripod As a prototype, a simple tripod is used to mount
the system for testing and usage.

€28.00

Extension Cable This allows for the system to have more
flexibility in the location that it is deployed.

€ 27.00

Computer / Processing Device A minimum cost is based on the Raspberry Pi 4 €75.00

Total €830.00

Table 5: Material Costs

Web Application
Earlier in this document, a web application to display traffic analytics was conceptualised. In this

section we will explore how this was achieved and justify design choices that were made. A

high-level walk-through of the system is followed with more in-depth documentation and

references. Furthermore, a comprehensive manual is made available in Appendix A.

Subsystem Overview

The web application is quite simple to understand on paper. It is a single page application (SPA)

built with common JavaScript framework React, TypeScript and component library Mantine. The

entire application does not have a traditional backend, but is rather hosted on Firebase, a

serverless cloud environment by Google. It is a backend as a service (BaaS) that offers

out-of-the-box solutions for a proprietary NoSQL database service called Firestore, web hosting,

authentication and cloud functions. The advantages of Firebase and why we chose this platform

will be discussed later on.

44

\

Backend Architecture

Firestore
In Firestore, there exist three collections: sessions, sessionData and stats. A session is used

across the application to describe a continuous capture of successive traffic where the LiDAR

station is stationary. It is described by a document in sessions with a start time, end time if the

session has finished and a location. Important is that the id of said document serves as the

primary key for each session across all collections, although this is not enforced. This means that

sessionData and stats each contain documents that correspond one-to-one to those in

sessions.

Documents in sessionData contain the raw captured data in the form of an array of JSON

objects describing the inference object and the capture timestamp. The inference object is

described as a string and generally "bicycle" and "pedestrian" are used, but this project is

designed with indeterminate object ids in mind.

stats contains documents that have pre-compiled statistic values based on the corresponding

data in sessionData. Moreover, stats contains a special document with id "avg" with the same

structure that contains the average values for all defined metrics across the documents in stats.

It is the documents in stats that are requested by the frontend. The reason for this split will be

discussed in Design Choices & Process.

Cloud Functions
A cloud function (CF) is deployed as an observer of the sessionData collection. It will be

executed on every update to each document in the collection. Only if data is added,

corresponding statistics are recompiled with the new data and the average statistics are updated

and the changes are written to stats. As mentioned before, it is the documents in stats that are

used for displaying in the frontend, so this CF takes care of lively recomputing these values on

every new inference.

Latter Data Pipeline
The pipeline introduced in ML Data Pipeline will continue after the webhook has written an object

and timestamp. As described above, the CF will be called and the respective and average

statistics will be updated. The frontend opens in turn an observer on the stats document

corresponding to the session that is shown on screen. This observer will update the local copy of

45

\

the statistics document. More details will be provided in the next section. The two observers and

the nature of React make it so that the entire application displays data in real-time, where the

latter data pipeline takes no more than ten seconds to complete, depending on the allocated

resources to the CF by Firebase. A detailed overview of the pipeline is given below. Note that the

frontend has been abstracted with a cube, as its internal details will be discussed in Frontend

Flow and Documentation.

Figure 21: Flow chart of latter data pipeline

46

\

Frontend Flow

Authorisation
This section will provide a brief visual roadmap the user can take. A pre-authorised email address

and password in Firebase are required to login into the system. To this end, the first page the

user is greeted with is a login page prompting an email address and password. The user is

notified in the case either or both of the fields are empty, the email address value is not an email

address or does not match any known email addresses or when the password is incorrect. If a

correct combination is provided, the web application will authenticate the user with Firebase and

redirect them to the dashboard. The user remains authenticated within the current browser

session.

Figure 22: Web application Login page (/login)

Home page
After logging in, the user is redirected to the dashboard. The dashboard has a simple navigation

bar on the left with buttons to each page, in addition to a colour theme switch (light/dark) and a

logout button. In the body of the dashboard an overview of all sessions that are currently live and

those that have finished in the past is displayed. Along with the exact dates, the location and the

status, each row of this overview also gives a very brief insight into the traffic distribution of that

47

\

session. Hovering over each of the aforementioned fields will show more information. Finally,

clicking on the session name will redirect the user to the analytics page of that session.

Next to this overview, a form allows the user to create and start a new session. A new session

requires a name and a start time, which can be now or in the future. An end time can also be set

and will stop the session automatically. Finally, a deeply optional location can be provided,

consisting of an address and a geopoint.

Figure 23: Web application dashboard Home (/)

Analytics page
The page most interesting to a traffic analyst is the Analytics page. This page will prompt the user

to select a session from a dropdown menu if none is selected.

Figure 24: Web application Analytics page, select session (/analytics)

48

\

When a session is selected, the application will redirect to a dynamic URL with the id of the

selected session. This will show a page with the analytical overview this project provides and is

fed directly by the documents from stats. Next to the dropdown menu to change sessions, there

is a segmented control that allows the user to change the time scope of the overview between

fifteen minutes, hours and days. This changes the granularity of all non-absolute statistics. This is

useful when the system is deployed continuously for a week and the user wants to see a per day

granularity.

As it was mentioned before, the web application initiates an observer to the respective document

in the stats collection. It was established earlier that the statistics document of the session

being written to and the average statistics document are updated in real-time. This is combined

with the local observer, enabling the web application to display live updates in real-time. This

happens across all points where the statistical data is used.

On top of the page are three cards that show the number of traffic objects (here bicycles and

pedestrians) in the current time scope. There is also a statistic that shows the interval between

detections of all sorts. These three cards compare their respective statistics to that of the

previous time scope and change style accordingly.

Below the three statistic cards is a graph that shows the distribution of the traffic since the start of

the session in blue. This graph also has the option to follow along in time and trailing behind four

units. The units can be changed with the time control mentioned before. Once again this data is

fetched directly from the stats collection, where the cumulative values are summed per time

interval in order to be displayed in this graph. Notable as well are the grey bars. They are the

average value that has been captured in other sessions at that time unit. That is to say that the

average at 13:00 is the average of all sessions that have data between 13:00 and 13:59. The same

logic is applied to fifteen minute intervals and days.

Next to the live graph is a card that contains metadata about the session. In particular, the name

and id; start and optionally end time; and the address and an interactive map with a pin. Next to

the name is also an indicator to show the status of the session. The id is copied to the user's

clipboard when clicked as the id is required by the webhook of the LiDAR system.

On the last row, two graphs remain. The first is a live tracker of the cumulative traffic, separated

into each object class. This stepped line graph follows time and trails back one hour to show the

49

\

recent history. A doughnut graph is displayed next to it that depicts the distribution between the

detected traffic objects.

Figure 25: Web application Analytics page, with session (/analytics/:id)

Dark mode
One of the features of Mantine, the React component library that was used, is native dark mode

support. Naturally, this made implementing a dark theme straightforward.

50

\

Figure 26: Web application Analytics page, with session, dark mode (/analytics/:id)

Design Choices & Process

In the process of developing this software, plentiful choices were made at various levels of

criticality and with various levels of confidence. Nevertheless, all choices are made in the best

interest and are justifiable as such.

Technology Stack & Tools
The most critical choices of software development, especially that in a tight timeframe, are made

at the beginning. Likewise here. Across the entire stack, technologies have been chosen based

on at least two factors: prior experiences and maturity. This is because a functional MVP has to

be realised within the allocated ten weeks. Taking away time for planning and designing

beforehand, only a few weeks remain. It is for this reason that familiarity with the tools and

software to be used in particular was the leading determinant in choice making.

It commonly is, but for this project we deem performance not important. Performance in terms of

the backend has the only requirement to handle minimal JSON document writes at most every

second or so. It should also serve a handful of connections to users. Both tasks are lightweight

and likely to cause big performance hits. For the frontend is not affected by a loss in loading or

51

\

operating performance because an application of sorts will be accessed by a few users per time

at the most and other than UX, such performance does not inhibit the workflow.

Backend
Traditional would be to create a server to run on Node or Python, like Express or Django. They

would expose a RESTful API which our frontend could use. Next to the HTTP server could be a

database server, relational or not, like Postgresql or MongoDB. Despite existing experience with

these technologies and them having a fair share of advantages, our point against them is that it is

comparatively difficult and tedious. The backend as envisioned is very simple; receive data on

one end, process it and push it to the frontend. Spending time setting up and hosting such an

environment and managing it during the project would be time wasted. That’s why we started

looking towards a more integrated solution and decided on Firebase. As outlined before,

Firebase is a serverless, managed backend environment with minimal setup and hosting out of

the box. Jasper has experience with deploying Firebase in medium sized projects and Firebase is

accessible through an excellent JavaScript SDK and has outstanding documentation. These

perks have made the obvious choice above a proprietary setup or even other cloud providers

like Azure or AWS.

Frontend
Nowadays it is hard to create a web application (do not read sites or pages) without pondering

what JavaScript framework to use. Traditional choices are Angular, Vue or React compared to

modern frameworks like Solid or Svelte. Note that the line between traditional and modern here

is no more than three years in the past. Because of a lack of experience and a young and

immature ecosystem, the latter choices are deemed unsuitable. React has matured over the past

ten years since it was open-sourced by Facebook in 2013 into the most popular JavaScript

framework and has a vast ecosystem. Moreover, Jasper has extensive experience with it. A

downside of React is that it takes a performance hit compared to more modern frameworks. This

is not a problem, however, since performance is not a priority.

Another question that needs answering beforehand is whether to use a component library and if

the answer is yes, which one. We showed before that speed and DX have a high priority and

therefore the use of a component library is recommended. A component library provides

out-of-the-box customisable components like buttons, text inputs, checkboxes and more, but also

structural components like grids and popovers. It also generalises colours, font families, spacings,

52

https://expressjs.com/
https://www.djangoproject.com/
https://www.postgresql.org/
https://www.mongodb.com/
https://firebase.google.com/docs
https://azure.microsoft.com/nl-nl/
https://aws.amazon.com/
https://angular.io/
https://vuejs.org/
https://reactjs.org/
https://www.solidjs.com/
https://svelte.dev/

\

shadows and more properties across the entire application where the library is a single source of

truth. A component library of sorts makes building layouts and forms very rapid. We settled on

Mantine for their extensive documentation, modern look and great DX. Mantine also offers a

great deal of utility hooks that speed up development as well and supports dark themes out of

the box.

Figure 27: An example of Mantine components

JavaScript is great partly because it is extended with features like modules, a type system,

JavaScript XML, top-level await and more. Unfortunately, those are not understood by the

JavaScript engines in browsers or Node. To this end, this abstract JavaScript code needs to be

transpiled into a simpler version, like ES5. The TypeScript compiler does this, along with bringing

types to an otherwise weakly typed language. This project is written entirely in TypeScript and for

the sake of this document, TypeScript and JavaScript are interchangeable. It is natural and hardly

arguable that TypeScript is the language of choice.

Lastly, a bundler must be chosen. A bundler takes all separate JavaScript modules and bundles

them into one file that can be linked to the index.html that the server exposes. This process

happens when the project is being built for production, but also development. Most bundlers also

provide a built-in development and preview server and takes care of hot module replacement

(HMR) . Webpack is commonly used, but also notorious for being incredibly slow. Vite is a toolkit1

1 Frameworks with HMR capabilities can leverage the API to provide instant, precise updates without
reloading the page or blowing away application state (Vite, n.d.)

53

https://mantine.dev/
https://www.typescriptlang.org/
https://webpack.js.org/
https://vitejs.dev/

\

that includes a bundler with the aforementioned features, but also a built-in TypeScript compiler

and TSX support. Vite is extremely fast because it has been built on top of esbuild, making 10 to

100 times faster than Webpack (E. Wallace, n.d.). Moreover, project setup is very intuitive with a

single NPM command.

Tools
The choice for IDE is not trivial to the project, as long as they are rich in functionality relevant to

the implementation process. WebStorm and VSCode are both contenders and having experience

with JetBrains’ environment, WebStorm was decided on. Nevertheless, both are available for free

under an educational licence. For all intents and purposes, this project is performed in an

educational context and not a commercial one.

The use of a version control system (VCS) is non negotiable. The university hosts a GitLab server

and this server is also used for the machine learning part of this project. It only makes sense to

use the same server here. We did decide that it is better to host a separate repository for the web

application, however. There are several points against a monorepo, most notable of which is the

lack of interdependence between the subsystems, because the only connection between them is

Firebase. Another point to be made is the fact that only one person has been allocated to the

development of the web application, so a shared repository is not compulsory.

Other tools include code linters and formatters. Industry standards are ESLint and Prettier. For

both a custom configuration was used across the entire project to ensure high quality code and

equal format across the entire repository. The configurations of these tools are declared in

./package.json.

Graphs
The decision at hand after having determined what stack to use was what data we need to

display and in what form. We were inspired by the live busyness overview that Google Maps

displays for certain stores and locations, where the live busyness is compared to a daily overview

of the average busyness. This captures a few important analytical values in one graph, namely

the live traffic per 15 minutes/hour/day, the distribution of live traffic over time, the average traffic

per 15 minutes/hour/day and the distribution of the average traffic. For those reasons we

decided to make this graph the main event on the Analytics page.

54

https://esbuild.github.io/
https://vitejs.dev/guide/
https://www.jetbrains.com/webstorm/
https://code.visualstudio.com/
https://gitlab.utwente.nl/
https://eslint.org/
https://prettier.io/

\

To embrace the liveness of the web application and showcase the real-time updates best, the

live-average bar chart is followed by a historic cumulative traffic count line chart. The right bound

moves along with time as the traffic flows in. To prevent this graph from becoming too crowded,

only the past hour is shown. Combined, that makes this graph great for seeing real-time detailed

overview as opposed to the time-aggregated values in the graph above.

Aesthetics
Design is inherently subjective and comes mostly with experience. But there are certain rules and

guidelines that one ought to follow to create a professional and meaningful product. As stated

before, Mantine allows us to outsource minor design concerns such as buttons and text inputs

without neglecting their importance. This left us room to focus on major design choices, such as

the layout of different pages and what graphs to display.

Documentation & Reference

In this section a brief documental overview will be presented. Not every file and component will

be covered for the reasons that that is outside the scope of this project and the fact that inline

documentation and descriptive component names should clue future developers in sufficiently.

Moreover, knowledge of React and specifically React Router V6 will be assumed in order to lay

out the implemented routing strategy. All of the external packages have their own respective

documentation, which will be assumed too. All path references are relative to the repository root.

Folder Structure
In the root of the folder, there are six folders and a bunch of configuration files for Firebase

(./.firebaserc, ./firebase.json and ./firestore.rules), NPM (./package.json), Vite

(./vite.config.js) and TS (./tsconfig.json) and also an ./index.html. The folders of

./node_modules, ./dist and ./.firebase are irrelevant to development as they are libraries

and the build destination and their contents are generated automatically. The folders ./src,

./public and ./functions contain the source code. ./public contains static files that are

shipped with the rest of the application to the browser. ./functions is a separate NPM package

that is generated by the Firebase CLI and contains the source code for the cloud functions.

./src contains all the components and the root of the React app (./src/views/App.tsx).

55

https://reactrouter.com/

\

./package.json describes this project as an NPM package. This allows commands defined in

./package.json/scripts to be executed by NPM. So can the Vite development server be

started with

> npm run dev

and deploy directly to Firebase through the Firebase CLI with

> npm run deploy[:hosting|:functions|:firestore]

Design Pattern: ./src
The web application has been built according to a more advanced design pattern that would be

generally required. This has been done with scalability in mind, where the codebase can

seamlessly accept more complex and interdependent extensions. As ./src contains the course

code of the app, this is where the VACS (views, assets, components, services) design pattern

unfolds. ./views contains one or more components directly tied to a <Route /> in

./src/views/App.tsx. ./assets contains static content like images and RegEx’s.

./components contains the majority of the React components and is further divided based on

component type (e.g., layout, modal, auth). ./services contains contexts, custom API

connectors, like for Firebase (./src/services/firebase.ts) and Google Maps

(./src/services/GoogleMaps). Each of the aforementioned folders and their subfolders may

have a utils folder with TS files that export one default utility function which can only be

imported by the siblings of the utils folder. Global and general utility functions should be put in

./src/services/utils.

As stated, ./src/views contains a loose resemblance of the <Router /> in <App />

(./src/views/App.tsx) in the form of the folder structure. So does ./src/views/home contain

the page that is rendered to the <Outlet /> in <AppShell />

(./src/components/layout/AppShell.tsx) as the index of the <Router />. Notable is that

<AnalyticsPage /> (./src/views/analytics/AnalyticsPage.tsx) itself also renders an

<Outlet />. This is so when the dynamic URL /analytics/:id is accessed, an

<AnalyticsPage /> is rendered to the outer <Outlet />, and then a <SessionAnalytics />

(./src/views/analytics/SessionAnalytics.tsx) is rendered to the inner <Outlet />,

creating an application that renders only what is necessary based on what has been requested.

56

\

That is to say that changing to another session with /analytics/:otherId, the

<AnalyticsPage /> is not actually rerendered; merely it’s inner <Outlet />. All other

components in ./src/views are rendered directly to the outer <Outlet />, except <LoginPage

/> (./src/views/analytics/SessionAnalytics.tsx), as this is rendered outside <AppShell

/>.

Cloud Functions: ./functions
There exists another NPM package inside the repository, namely under ./functions. This is an

automatically generated subproject by the Firebase CLI, because it requires a TypeScript

configuration that is slightly different from the root one and is tailored for deployment to the

cloud. ./functions/package.json defines scripts that are used in the linting and building of

the source folder, but should not be used individually. These separate scripts are combined by

the firebase deploy command, which should be used through deploy in ./package.json.

The build directory is ./functions/lib.

The folder ./functions/src contains the source code for the Cloud Functions, which is

currently only one and is defined in ./functions/src/index.ts. The exported function imports

utility functions from ./functions/src/utils. These utility functions are the logic for

computing the specific and average statistics.

Simulator
Early on in the development process there was a need for representative data for developing the

statistical caching logic, building proper looking graphs that are performant enough on large

datasets. This data should be generated automatically to remove the necessity to maintain a

static collection of data points, which obviously would be rather time consuming to do. To this

end, we wrote a mathematical model that can generate traffic objects within a specified time

frame, usually 08:00 to 18:00. This data had to be distributed close to a normal distribution in

order to simulate the expected trends we would observe within this timeframe. The crucial step

here is calculating the based on the absolute value (i.e., ’s close to the mean of the∆𝑡 𝑡 𝑡

timeframe should generate tighter ’s and vice versa). An interface to this simulator is on the∆𝑡

otherwise hidden route /sim.

This was achieved by starting with a normal distribution and transforming it in such a way that the

t-axis represents legible time. This means that one step equals one second, which makes a 10

57

\

hour domain . Define to be the lower bound and to be the upper[0, 36000] 𝑚 = 0 𝑀 = 36000

bound. We also didn’t use a strict normal distribution, because some terms do not matter as much

on the previously defined domain. Starting off with the initial normal distribution

𝑁
𝑖𝑛𝑖𝑡

(𝑥) = 1
σ 2π

𝑒
− 1

2 (𝑥−µ
σ)

2

we omit from the numerator of the first multiplicand and the from the exponent, as they2π 1
2

are insignificant in comparison. Moreover, we define so the optimum is in theµ = 1
2 𝑀 = 18000

middle of the specified domain, but this need not specifically be the case. The definition of

is derived from the shape of the curve we would like to see and in particular, theσ = 15000

non-zero value we need at and . Lastly, we need to control how many traffic objects𝑁(𝑚) 𝑁(𝑀)

we generate. Therefore, the entire function is scaled such that its integral over [𝑚, 𝑀]

approximates 2000, or any number otherwise if desired. The scaling factor turns out to be 1000.

This leaves us with the final function

𝑁(𝑡) = 1000
σ 𝑒

−(2𝑡−𝑀
2σ)

2

∼ 𝓝(µ, σ2)

This function does not give us the tools we need, however. We are more interested in the area

under the curve as that defines the amount of traffic. We need to solve the for any∆𝑡 = 𝑡
2

− 𝑡
1

given and such that . To this end, we look towards the origins of the integral𝑡
1

𝑡
2

𝑡
1

𝑡
2

∫ 𝑁(𝑡)𝑑𝑡 = 1

and implement a Riemann sum across the domain . We create rectangles with height[𝑚, 𝑀]

, base and area in a way such that the next rectangle has widthℎ = 𝑁(𝑡
𝑖
) 𝑏 = 𝑡

𝑖+1
− 𝑡

𝑖
𝐴 = 1

. If , then and so and ,𝑡
𝑖+2

− 𝑡
𝑖+1

𝐴 = 𝑏ℎ 𝑏 = 𝐴
ℎ ∆𝑡

𝑖
= 𝑡

𝑖+1
− 𝑡

𝑖
= 1

𝑁(𝑡
𝑖
) 𝑡

𝑖+1
= 𝑡

𝑖
− 1

𝑁(𝑡
𝑖
) = 𝐼(𝑡)

which is a recurrence relation on and . We now have a tool to calculate consecutive ’s𝑡 𝑡
0

= 𝑚 𝑡
𝑖

based on the relative timestamp for each traffic object we want to generate. Mathematically, this

is hard if not impossible to solve and certainly outside the scope of this programme. Luckily, we

can approach this problem programmatically with a loop, keeping track of the intermediate value

of , using it in the next iteration and stopping when .𝑡
𝑖

𝑡
𝑖+1

𝑡
𝑖

≥ 𝑀

58

\

In ./src/views/simulator/util/writeData.ts, is implemented by creating a𝐼(𝑡)

DataPoint[] (./src/views/analytics/AnalyticsPage.tsx) whose timestamp values are

shifter from to 8:00. With the parameters tuned as above, 10 hours will be generated, so𝑡 = 0

8:00 to 18:00. In each iteration, a record is kept track of for the next iteration. After the𝑇: 𝑖 → 𝑡

loop has finished, a new document in sessions is made and the entire DataPoint[] is written

to the sessionData collection.

Security
Firebase provides authentication out of the box. Although various OAuth providers are

supported, we opted for a simple email/password combination. All routes are protected if no user

is authenticated by means of not rendering the contents to relevant <Route /> components. To

this end, a <RequiresAuth /> (./src/components/auth/RequiresAuth.tsx) components

wraps <AppShell />. The login logic itself is contained in <LoginPage />

(src/views/auth/LoginPage.tsx). Firebase implements the OAuth 2.0 standard and for further

documentation and implementation details we refer to their documentation.

Time Zones
In the case that future work is performed it is important for those to understand how time zones

are dealt with. Chart.js requires a time adapter. Moment has been chosen for this and is used by

itself throughout the project as well. Moment extends the functionality of the native Date API and

is relatively timed to the local machine. Firebase, however, has its own implementation for

datetime and executes cloud functions at UTC. This creates the situation where the inference is

mate at UTC+1, but the statistics are run at UTC. The frontend is developed to deal with this by

accepting timestamps in UTC and converting them to local time; UTC+1 in this case.

59

https://firebase.google.com/docs/auth
https://www.chartjs.org/
https://github.com/chartjs/chartjs-adapter-moment
https://momentjs.com/

\

Testing & Results

Machine Learning Model

Throughout the development process, two main methods for testing were used: manual testing

and full system testing. At every stage of the development of the machine learning model,

extensive manual testing had to be carried out to ensure a robust system to comply with

Mindhash’s requirements. The tests used did not only make the system more robust and free of

errors but it also helped speed up the development process which was critical due to the long

waiting time associated with labelling and training for a model.

During the labelling process, a data collection tool was created, before using the tool, it was

tested against file overrides, ensuring every LiDAR frame is accompanied by an image and

making sure every frame is saved from memory to the filesystem. This was done by running the

tool for an hour and running a script to check if any of the expected files were missing. At first,

some errors were observed leading to duplicate frames and mismatched image-to-data mapping,

and as a result of these tests, they were quickly fixed in preparation for a data collection run.

To test the trained model without being burdened by the training time, the group capitalised on

the time needed to label the training data. At about every 50 labels interval, a model was trained

on the labelled data to quickly test for flaws and reiterate on the model using updated training

parameters. To test the accuracy of the iterations, a group member would go and carry out real

life tests which they reported back to the group for immediate reiteration. Testing in this manner

did not only allow the group to fix errors but also was a major time saver.

Full System Testing

Finally, the model was tested with the rest of the system to complete a full system test. All of the

components of the system were integrated together and tested in a simulated and then real

environment. In the simulated environment, a bicycle pass was generated at a random interval

between 5 and 10 seconds and was communicated to the web application. Many issues were

uncovered during the testing like timezone mismatch and protocol errors but they were quickly

60

\

resolved in between testing sessions. More than error fixing, the full system test allowed the

group to measure delays and reiterate to improve on total inference time.

61

\

Legal Considerations &

Compliance
Important to companies of any kind and size seeking to implement projects are their legal

implications. MINDHASH is a small company and does not have a dedicated legal department. It

is for this reason we will have to consider legal implications and compliance ourselves. There are

three topics of law that we will consider: data protection, licences and intellectual property.

Data Protection Law (GDPR)

In the territory of the European Union the General Data Protection Regulation holds. Two

important definitions to consider are that of the Controller and Processor. In simple terms, a data

Controller is the body that determines the purposes and means of the processing of personal

data (Wolford, 2018). The data Processor is the body who processes personal data on behalf of

the Controller (Wolford, 2018). In terms of this project, MINDHASH and group 6 are jointly the

Controller. Google Cloud is the Processor (Google Cloud, n.d.-a).

Another important aspect of the GDPR is the territorial scope. It states to apply to data processing

of the personal data of EU data subjects, regardless of whether the Processor or Controller are in

the EU themselves (Wolford, 2018a), and in particular behavioural data as long as this behaviour

is observed in the EU (Wolford, 2018a). For this project, that means that the fact that MINDHASH

is located in The Netherlands is not definitive for GDPR compliance. Neither is using Google

Cloud and/or Firebase, located in Frankfurt, Germany (europe-west3) or Middenmeer, The

Netherlands (europe-west4) respectively (Google Cloud, n.d.).

The GDPR states that personal data is any information that is identified or identifiable to a natural

person (Wolford, 2018). The data that the system will be collecting is LiDAR data, in the shape of a

point cloud and paired with timestamps. This can in no way be used to identify EU citizens, in

particular bicycle lane traffic in the greater Enschede area. This leaves us with the fact that the

system does not collect personal data as defined in the GDPR and thus it need not be compliant.

62

\

From the moment other data will be collected, such as account info in the web app, this system

must be GDPR compliant.

Intellectual Property Right

Important to this project, maybe more than others, is the consideration of intellectual property (IP)

rights. Issued by MINDHASH to the University of Twente and implemented by students in an

educational context, IP right of the proposed system is not as straightforward as usually would be

the case. Engaging in courses at the University of Twente issued by an external company legally

places the IP right out of the hands of the students developing the IP and into the hands of said

company. This can be overruled by the appointed Examination Board at the students’ request.

(VSNU & NFU, 2020).

Software Licences

Since it has been determined that this project is executed in an educational setting (VSNU & NFU,

2020), most software licences that are needed for this project are available and justifiable under

their educational licence. Others are available under an open source licence like Apache 2.0 (↗)

or MIT (↗).

We required licences to the following software: Livox SDK, livox_detection_simu, Ubuntu, gcc,

TensorFlow, SocketIO and PyCharm. All of these, apart from PyCharm, are open course and

commercially usable, since Livox SDK and SocketIO are published under the MIT licence (Livox,

2020; SocketIO, 2018), livox_detection_simu and gcc are published under the GNU General

Public licence (Livox, 2021; GCC, n.d.), TensorFlow is published under the Apache 2.0 licence

(TensorFlow, 2021) and Ubuntu is published under Canonical's proprietary intellectual property

rights licence (Canonical, 2015).

Software required for the web app are React (↗), TypeScript (↗), ESLint (↗), Prettier (↗) and

Mantine (↗). Luckily, all but one project are published under the MIT licence (Ramos, 2018; Zakas,

2021; Fox, 2019; Rtishchev, 2021), with TypeScript being published under the Apache Commons

2.0 licence (Hegazy, 2014). The web app has been developed in JetBrains’ WebStorm IDE and

version control will be managed on the university’s GitLab, both of which hold an educational

63

https://opensource.org/licenses/Apache-2.0
https://opensource.org/licenses/MIT
https://reactjs.org/
https://www.typescriptlang.org/
https://eslint.org/
https://prettier.io/
https://mantine.dev/

\

licence (JetBrains, 2021; GitLab, n.d.). Lastly, the webapp’s backend and deployment environment

Firebase comes in a free tier and paid tier, the latter of which is required for this project. Both are

eligible for commercial use (Google Cloud, 2022; Google Developers, 2021).

64

\

Discussion & Future Work
Applying machine learning to point cloud data for classification is a complex problem which was

difficult to solve within ten weeks. However, it is a very interesting problem with many points

which could be further improved or investigated.

Additional Metrics

Given more time, a high priority would be to gain further insights into the traffic that is being

monitored by the sensor as defined by the first objective of the project. The speed of the cyclists

is one metric which would be of interest to municipalities as it is important to consider for safety.

In the point cloud frames collected, a trail can be seen behind the cyclists. This is due to the fact

that the data is collected over a period of time (in this case 0.5 seconds) and the object is moving.

The team believes that this trail could be used to infer through regression the speed of the

detected objects. Additionally, the distance between cyclists and their postures are also

interesting points of data to measure and display. Both can be used to measure safety and gain

insight into the behaviours of cyclists.

Edge Implementation

Hardware
The current solution relies on a laptop with the implemented software to be connected to the

sensor in order to process the data. According to the first and second project objectives, the

solution should be both robust and integrated. While the current solution is portable and can be

integrated into a single device, it is quite large and contains unnecessary components which are

not needed for the device. This could be improved through the usage of a smaller edge

computing device such as a Raspberry Pi 4 with an FPGA module. This not only allows for the

overall system to be smaller and more easily integrated, but also less expensive. While it has not

been tested, in order to be able to use this type of computing device, the software would require

some optimisation. One large bottle neck of the system is the way in which files are being stored.

65

\

Once this problem is solved the system will be much closer to real-time and should be able to

work with less computational resources.

Occlusion
FInally, one prominent limitation of the current system is when (almost) complete occlusion

occurs. Because the sensor uses light to gather information, it is possible for objects with high

reflectivity (such as bicycles) to block other objects that are behind them. In the majority of cases

this is not a problem, as it is rare for an object to be fully blocked by another. Usually at least

some portion of the object will still be ‘visible’ to the sensor and can still be detected. However, it

is not possible to detect an object that is fully occluded. This edge case can be solved through

the usage of multiple sensors at different angles. This would allow for higher coverage such that

even if occlusion occurs at one angle, the other sensor should still be able to gather data that the

other cannot. Furthermore, to reduce the risk of obtaining false negative detections when partial

occlusion occurs, it might be beneficial to add more frames containing partially occluded bicycles

to the dataset.

Web Application

As outlined in the Design Project course description, we are required to deliver an MVP. By all

means have we achieved this. Despite the web application being a complete and fully integrated

system, there are a few improvements that we would have liked to implement given a more

generous timeframe.

First of those would be to finish the other pages on the dashboard Security and Settings. We

would have liked moderators to be able to manage and create their accounts through the

Security page, but the only way of doing so currently is through the Firebase Console. Various

settings could have been implemented, ranging from theme colour to the granularity of the

graphs. This would require an extensive overhaul, however. It would have been good practice to

take these changes into account when developing, but the choice was made to focus on speed

more than extensibility.

The second recommendation is to implement more data visualisers, as has been later asked to

do by MINDHASH. On the Live Analytics page, there are two cards that have no content which

are dedicated to this inquiry. In order to do so, one will have to create a new key in the stats

66

\

cache and update the stats logic accordingly. Then filling a table of sorts goes in the same way as

data is fed elsewhere.

Thirdly, performance could be improved with the use of proper React contexts and lazy loaded

components. Implementing this is not hard by any means and will drastically improve loading

performance, especially when the other pages grow in complexity. However, as has been argued

earlier, performance is not an important metric for this dashboard and as such we have not done

so.

67

\

References
1. Andreas Geiger, Philip Lenz, & Raquel Urtasun (2012). Are we ready for Autonomous

Driving? The KITTI Vision Benchmark Suite. In Conference on Computer Vision and

Pattern Recognition (CVPR).

2. Bloch, Blumberg, Laarts (2012) Delivering large-scale IT projects on time, on budget, and

on value. McKinsey Quarterly, January 2012.

3. Brosnan, M., Petesch, M., Pieper, J., Schumacher, S., & Lindsey, G. (2015). Validation of

Bicycle Counts from Pneumatic Tube Counters in Mixed Traffic Flows. Transportation

Research Record: Journal of the Transportation Research Board, 2527(1), 80–89.

https://doi.org/10.3141/2527-09

4. Cai, L., & Zhu, Y. (2015, May 22). Data Science Journal.

https://datascience.codata.org/articles/10.5334/dsj-2015-002

5. Canonical. (2015, July 15). Intellectual property rights policy. Ubuntu. Retrieved September

22, 2022, from https://ubuntu.com/legal/intellectual-property-policy

6. Chen, X., Ma, H., Wan, J., Li, B., & Xia, T. (2017). Multi-view 3d object detection network for

autonomous driving. In Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition (pp. 1907-1915).

7. Ciric, D., Lalic, B., Gracanin, D.,Tasic, N., Delic, M., & Medic, N. (2019). Agile vs. Traditional

approach in project management: Strategies, challenges and reasons to introduce agile.

Procedia Manufacturing, 39, 1407-1414.

8. Clegg, D., & Barker, R. (1994). Case Method Fast-Track: A Rad Approach (Computer Aided

System Engineering) (1st ed.). Addison-Wesley.

9. Fox, J. (2019, January 3). prettier/LICENSE at main · prettier/prettier. GitHub. Retrieved

September 22, 2022, from https://github.com/prettier/prettier/blob/main/LICENSE

68

https://doi.org/10.3141/2527-09
https://datascience.codata.org/articles/10.5334/dsj-2015-002
https://ubuntu.com/legal/intellectual-property-policy
https://github.com/prettier/prettier/blob/main/LICENSE

\

10. GitLab. (n.d.). GitLab Pricing. Retrieved June 22, 2022, from

https://about.gitlab.com/pricing/

11. GNU. (n.d.). License. GNU GCC. Retrieved September 22, 2022, from

https://gcc.gnu.org/onlinedocs/libstdc++/manual/license.html

12. Google Developers. (2021, November 9). Google APIs Terms of Service. Retrieved

September 22, 2022, from https://developers.google.com/terms/

13. Google Cloud. (2022, September 20). Google Cloud Platform Terms Of Service. Retrieved

September 22, 2022, from https://cloud.google.com/terms/

14. Google Cloud. (n.d.-a). Google Cloud & GDPR. Retrieved September 19, 2022, from

https://cloud.google.com/privacy/gdpr

15. Google Cloud. (n.d.). Select locations for your project | Firebase Documentation.

Firebase. Retrieved September 19, 2022, from

https://firebase.google.com/docs/projects/locations

16. Google Cloud. (n.d.). Vertex AI. Retrieved September 19, 2022, from

https://cloud.google.com/vertex-ai

17. H. Ramos. (2018, September 8). react/LICENSE at main · facebook/react. GitHub.

Retrieved September 22, 2022, from

https://github.com/facebook/react/blob/main/LICENSE

18. Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International conference on machine

learning (pp. 448-456). PMLR.

19. JetBrains. (2021, September 1). TOOLBOX SUBSCRIPTION AGREEMENT FOR STUDENTS

AND TEACHERS. Retrieved September 22, 2022, from

https://www.jetbrains.com/legal/docs/toolbox/license_educational/

69

https://about.gitlab.com/pricing/
https://gcc.gnu.org/onlinedocs/libstdc++/manual/license.html
https://developers.google.com/terms/
https://cloud.google.com/terms/
https://cloud.google.com/privacy/gdpr
https://firebase.google.com/docs/projects/locations
https://cloud.google.com/vertex-ai
https://github.com/facebook/react/blob/main/LICENSE
https://www.jetbrains.com/legal/docs/toolbox/license_educational/

\

20. Kendrick, Tom (2015). "Chapter 3. Identifying Project Scope Risk". Identifying and

Managing Project Risk: Essential Tools for Failure-Proofing Your Project (3rd ed.).

AMACOM. pp. 50–52.

21. Ku, J., Mozifian, M., Lee, J., Harakeh, A., & Waslander, S. L. (2018, October). Joint 3d

proposal generation and object detection from view aggregation. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (pp. 1-8). IEEE.

22. Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., & Beijbom, O. (2019). Pointpillars: Fast

encoders for object detection from point clouds. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition (pp. 12697-12705).

23. Lidar 3-D Object Detection Using PointPillars Deep Learning - MATLAB & Simulink -

MathWorks Benelux. (n.d.).

https://nl.mathworks.com/help/lidar/ug/object-detection-using-pointpillars-network.html

24. Livox. (2020, December 4). Livox-SDK/LICENSE.txt at master · Livox-SDK/Livox-SDK.

GitHub. Retrieved September 22, 2022, from

https://github.com/Livox-SDK/Livox-SDK/blob/master/LICENSE.txt

25. Livox. (2021, January 20). livox_detection_simu/LICENSE at master ·

Livox-SDK/livox_detection_simu. GitHub. Retrieved September 22, 2022, from

https://github.com/Livox-SDK/livox_detection_simu/blob/master/LICENSE

26. Livox. (2019). Livox Mid Series User manual. (n.d.).

https://www.livoxtech.com/3296f540ecf5458a8829e01cf429798e/downloads/Livox%20M

id%20Series%20User%20Manual%20EN%2020190118.pdf

27. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016,

October). Ssd: Single shot multibox detector. In European conference on computer vision

(pp. 21-37). Springer, Cham.

28. Luo, J. Q., Shi, Y., & Xie, C. J. FSSPD: Fast Single Stage Pedestrian Detector for

Autonomous Driving. Dim, 3, 3.

29. matlabengine. (2022, September 13). PyPI. https://pypi.org/project/matlabengine/

70

\

30. Mendelow, A. L., "Environmental Scanning--The Impact of the Stakeholder Concept" (1981).

ICIS 1981 Proceedings. 20. https://aisel.aisnet.org/icis1981/20

31. M. Hegazy. (2014, July 14). TypeScript/LICENSE at main · Microsoft/TypeScript. GitHub.

Retrieved September 22, 2022, from

https://github.com/microsoft/TypeScript/blob/main/LICENSE.txt

32. Nair, V., & Hinton, G. E. (2010, January). Rectified linear units improve restricted boltzmann

machines. In Icml.

33. Nobelius, D. (2001). Empowering project scope decisions: introducing R&D content

graphs. R&D Management, 31(3), 265–274. https://doi.org/10.1111/1467-9310.00215

34. Qi, C. R., Liu, W., Wu, C., Su, H., & Guibas, L. J. (2018). Frustum pointnets for 3d object

detection from rgb-d data. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 918-927).

35. Rtishchev, V. (2021, January 7). mantine/LICENSE at master · mantinedev/mantine. GitHub.

Retrieved September 22, 2022, from

https://github.com/mantinedev/mantine/blob/master/LICENSE

36. Shenhar, A. J. (2001). One Size Does Not Fit All Projects: Exploring Classical Contingency

Domains. Management Science, 47(3), 265–274.

https://doi.org/10.1287/mnsc.47.3.394.9772

37. S. Lauesen, “Software Requirements: Styles and Techniques,” Addison-Wesley,

Boston, 2002.

38. Shin, K., Kwon, Y. P., & Tomizuka, M. (2019, June). Roarnet: A robust 3d object

detection based on region approximation refinement. In 2019 IEEE intelligent

vehicles symposium (IV) (pp. 2510-2515). IEEE.

39. Simon, M., Amende, K., Kraus, A., Honer, J., Samann, T., Kaulbersch, H., ... &

Michael Gross, H. (2019). Complexer-yolo: Real-time 3d object detection and

tracking on semantic point clouds. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops (pp. 0-0).

71

https://aisel.aisnet.org/icis1981/20
https://github.com/microsoft/TypeScript/blob/main/LICENSE.txt
https://doi.org/10.1111/1467-9310.00215
https://github.com/mantinedev/mantine/blob/master/LICENSE
https://doi.org/10.1287/mnsc.47.3.394.9772

\

40. SocketIO. (2018, February 28). socket.io/LICENSE at main · socketio/socket.io. GitHub.

Retrieved September 22, 2022, from

https://github.com/socketio/socket.io/blob/main/LICENSE

41. TensorFlow. (2021, November 29). tensorflow/LICENSE at master · tensorflow/tensorflow.

GitHub. Retrieved September 22, 2022, from

https://github.com/tensorflow/tensorflow/blob/master/LICENSE

42. Vite JS. (n.d.). Vite Features. Vitejs.dev. Retrieved November 8, 2022, from

https://vitejs.dev/guide/features.html

43. VSNU & NFU. (2020, September). Addendum to the Set of Guidelines Dealing with IPR

and Students. UTwente. Retrieved September 19, 2022, from

https://www.utwente.nl/.uc/f1196c20b01025b23ca01f2f78302a5c804c27b72c83500/Add

endum%20to%20the%20Set%20of%20Guidelines%20Dealing%20with%20IPR%20and%2

0Students.pdf

44. Wallace, E. (n.d.). esbuild - An extremely fast JavaScript bundler. Esbuild. Retrieved

November 8, 2022, from https://esbuild.github.io/

45. Wolford, B. (2018, November 14). Art. 3 GDPR – Territorial scope. GDPR.Eu. Retrieved

September 19, 2022, from https://gdpr.eu/article-4-definitions/

46. Wolford, B. (2018a, November 14). Art. 4 GDPR – Definitions. GDPR.Eu. Retrieved

September 19, 2022, from

https://gdpr.eu/article-3-requirements-of-handling-personal-data-of-subjects-in-the-union/

47. Wolford, B. (2018b, November 14). Art. 5 GDPR – Principles relating to processing of

personal data. GDPR.Eu. Retrieved June 21, 2022, from

https://gdpr.eu/article-5-how-to-process-personal-data/

48. Yan, Y., Mao, Y., & Li, B. (2018). Second: Sparsely embedded convolutional detection.

Sensors, 18(10), 3337.

49. Zakas, N. C. (2021, August 5). eslint/LICENSE at main · eslint/eslint. GitHub. Retrieved

September 22, 2022, from https://github.com/eslint/eslint/blob/main/LICENSE

72

https://github.com/socketio/socket.io/blob/main/LICENSE
https://github.com/tensorflow/tensorflow/blob/master/LICENSE
https://vitejs.dev/guide/features.html
https://www.utwente.nl/.uc/f1196c20b01025b23ca01f2f78302a5c804c27b72c83500/Addendum%20to%20the%20Set%20of%20Guidelines%20Dealing%20with%20IPR%20and%20Students.pdf
https://www.utwente.nl/.uc/f1196c20b01025b23ca01f2f78302a5c804c27b72c83500/Addendum%20to%20the%20Set%20of%20Guidelines%20Dealing%20with%20IPR%20and%20Students.pdf
https://www.utwente.nl/.uc/f1196c20b01025b23ca01f2f78302a5c804c27b72c83500/Addendum%20to%20the%20Set%20of%20Guidelines%20Dealing%20with%20IPR%20and%20Students.pdf
https://esbuild.github.io/
https://gdpr.eu/article-4-definitions/
https://gdpr.eu/article-3-requirements-of-handling-personal-data-of-subjects-in-the-union/
https://gdpr.eu/article-5-how-to-process-personal-data/
https://github.com/eslint/eslint/blob/main/LICENSE

\

50. Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d object

detection. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 4490-4499).

73

\

Appendix A: Manual
Web App
The following is a manual to get started with the bicycle dashboard and starting up the inference

module. Go to https://bicycle-counter-b71c4.web.app/. If you are accessing for the first time or if

your session has expired, you will see a login screen. Use this to log in with

● Username: bikes@mindhash.nl

● Password: 123456

Figure 28: Web application Login page (/login)

Once you are logged in or if you were previously, you will see the homepage of the dashboard.

Here is an overview of all the sessions that have been recorded so far. You can also start a new

session with the form on the right. Visit a session’s analytics page by clicking on their name.

74

https://bicycle-counter-b71c4.web.app/

\

Figure 29: Web application dashboard Home (/)

If you want to create a new session, the session

name and start date are required. You can

choose a date and time in the future or click the

checkbox “Start immediately”. Initially, the

session will last indefinitely or until the session is

stopped manually. More about this later. If the

end time is known beforehand, it can be set by

clicking the “Set end time ahead” checkbox.

Below it, an end time and date field will appear

which can be filled accordingly. Optional is the

location. The session can be created by clicking

the big button “Start session”. If an input is given

that is not acceptable, an error message will

appear below the field that generated the error.

Figure 30: Web application dashboard Home (/)

75

\

An existing or new session’s analytics can be viewed. To do so, click on the monitor icon called

Analytics on the left. This will take you to the analytics page. From the selector in the top right,

select a session. Once a session has been selected, the analytics will be loaded. Next to the

selector is a segmented control for setting the time scope. Changing this will change the

granularity of the graphs and of the comparisons made in the three cards on the top of the page.

Set it to “days” if you want an overview of a week and “15 minutes” if you want an overview of the

last few hours.

Figure 31: Web application Analytics page, select session (/analytics)

The bar chart in the middle of the screen has a switch labelled “From start” and “Last 4 hours”.

This changes the view of this graph to be from the start until the last recorded instance or it will

show you the last 4 units of time and move along live.

Figure 32: Web application Analytics page, with session (/analytics/:id)

If the session needs to be stopped, click the menu in the top right of the card that shows the

session data (name, start time, etc) and click “Stop session”. This will be disabled if the session is

already stopped. A green or red badge will indicate if the session is live or stopped respectively.

This card shows the session’s unique ID underneath the name. Click this text to copy it to your

clipboard. The text will become green on success. This ID is needed to start the inference

module in the next step. In the navigation bar on the left, there are two buttons in the bottom left.

76

\

Use the sun/moon icon to change the theme of the dashboard to light or dark and click the door

with the arrow to log out.

Figure 33: Web application Analytics page, with session

(/analytics/:id)

Figure 34: Web application change theme button (top)

and logout button (bottom)

Client
Firstly, it is of importance to clone the liveInference branch from the GitLab repository of the

project. Next, install dependencies required to run the main.py. After this, make sure that you

have installed the 2022b version of MatLab and furthermore have installed the MatLab Engine

API for Python for the Python version that you would like to use (>= 3.9 is recommended).

Before being able to connect to the LiDAR unit, one has to make sure that the ethernet adapter

to which the unit is connected is on the same subnet as the ip address of the LiDAR sensor

(default is 192.168.1.51), i.e. “192.168.1.2” and make sure the subnet mask is set accordingly (i.e.

“255.255.0.0”). The address can be changed in the source code of the application in the

/OpenPyLivox/Lidar.py file, on the line shown in Figure 35.

77

https://gitlab.utwente.nl/s2300257/cs-dp-2022/-/tree/liveInference
https://nl.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html
https://nl.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html

\

Figure 35: The line where one should manually change the addresses of the host (first) and sensor (second).

In order to successfully deploy the system, it is of importance to change the session ID in the

source code of the application. This should be done on the line shown in Figure 36, which is

furthermore located in the /OpenPyLivox/Lidar.py.

Figure 36. The line where one should manually change the session ID of the created session.

After this, simply run the main.py file with your Python version that has the MatLab Engine API for

Python and the other dependencies installed and the detection results will be automatically sent

to the WebApp.

Data collection
If you would like to simply collect point cloud data and store this data in a .csv file, first clone the

CollectionAdaptation branch from the GitLab repository. Next, install dependencies required to

run the main.py.

Before being able to connect to the LiDAR unit, one has to make sure that the ethernet adapter

to which the unit is connected is on the same subnet as the ip address of the LiDAR sensor

(default is 192.168.1.51), i.e. “192.168.1.2” and make sure the subnet mask is set accordingly (i.e.

“255.255.0.0”). Make sure to change the ip address of the local machine in the code to the actual

local address of the machine in use (from the perspective of the ethernet adapter to which the

LiDAR sensor is connected). This should be done in the main.py file on the line shown in Figure

37.

78

https://gitlab.utwente.nl/s2300257/cs-dp-2022/-/tree/liveInference

\

Figure 37. The line where one should manually change the ip address to the one of the local machine on

the network with which the LiDAR sensor is connected

Next, set for how many seconds a single point cloud data frame should take (and thus how many

points a single data frame should contain, note that the sensor collects data points at 100,000

pts/s) by setting the global “RUN_FOR_SECONDS” variable. Next, set how many seconds you

want the sensor to wait with the collection of data points by setting the global

“START_DELAY_SECONDS”. Lastly, set the collection toggle mode to be either “True” or “False”

by setting the global variable “TOGGLECOLLECTION”. The global variables used to set above

parameters are on the lines shown in Figure 38.

Figure 38. The lines at which one can set a number of collection parameters.

When the “TOGGLECOLLECTION” variable is set to “True”, the Lidar will continuously collect

point cloud data frames of the specified length after pressing the spacebar. When the

“TOGGLECOLLECTION” variable is set to “False”, the sensor will only collect a single point cloud

data frame when one presses the spacebar.

The collected point cloud data frames are stored as a .csv file, with each point having the

following properties: x, y, z, intensity, time, returnNum. The time is accurate up to a microsecond.

79

\

Appendix B: Team Contract
Project Title: LiDAR Traffic Monitoring

Client: Mindhash

Supervisor: Dr. Duc V. Le

Team information
Name Grade expectations Preferable day, time, and

place to have extra
meetings

Preferred method of
communication

Minimum
grade

Expected
grade

Remy 7.5 8 Any time of week except
Weds during lunch.

 WhatsApp

Sebastiaan 8.0 9.5 Any time, preferably not on
Thursdays however

WhatsApp, Discord,
Teams, in-person

Malek 7.5 9.0 Anytime except Fridays
11:00 - 15:00

Text: Whatsapp
Voice: Discord/Teams

Jasper 7.0 8.0 Anytime, given notice WhatsApp, Teams

Omar 7.0 8.0 Anytime, given notice WhatsApp, Teams,
Discord

Project Goals
What are your team goals for the project? What do you want to achieve? What skills do you want

to improve or work?

● To gain knowledge in the usage of a LiDAR sensor

● To develop a product that meets all the requirements.

● To enhance experience of machine learning in embedded systems

● To practise interacting with a client to develop a product

● To demonstrate mastery of the design process

80

\

Team Expectations
1. Participation

1.1. We agree not to miss any meeting unless something is very important.

1.2. We agree to actively listen to the other members and try not to lose focus.

1.3. We agree to put effort into contributing towards the topics or issues being

discussed.

2. Meetings
2.1. We agree to come to the meetings on time.

2.2. We agree to prepare ourselves with the ideas, and the tasks to be done before

the meeting.

2.3. We agree to conduct ourselves formally during meetings to stay productive

3. Communication
3.1. We agree to use the following tools for communication: WhatsApp, Slack,

Microsoft Teams

3.2. We agree to decide a venue and time for the physical meetings.

3.3. We agree to communicate with the team if we are unable to come to meetings

beforehand.

3.4. We agree to communicate with the team if we are going to be late to meetings

beforehand.

4. Individual Accountability
4.1. We agree that if a team member does not complete the assigned task in time

without informing us, this is their responsibility.

4.2. We agree to communicate our to‐do tasks within the team, and if possible we

send reminders to each other to have a submission on time.

4.3. We agree to use Jira to assign and manage tasks.

4.4. We agree to communicate with the others in the case that we are.

5. Conduct
5.1. We will not tolerate rudeness in meetings as it affects the quality of the project.

5.2. We will be disciplined and honest throughout the project.

5.3. We agree to follow the orange card procedure for a warning to the team

member(s).

81

\

6. Conflict
6.1. We agree to discuss the entire team's problem and mutually find a solution.

6.2. We agree to discuss the problem with our mentor(s) and project coordinator if we

couldn't identify the solution.

6.3. We agree to conduct any disagreements in a civil manner, and allow for both sides

to present their argument.

Team Agreements

I undersigned, hereby declare that I have read, agreed, and accepted all the rules and

commitments mentioned in this document and will try my best to follow these rules during the

Design Project. If the rules are not being followed by us, we will bear the consequences as

mentioned.

Name: Remy Benitah

Student number: s2247372

Date: 21 September 2022

Name: Malek Assaad

Student number: s2374544

Date: 22 September 2022

Name: Sebastiaan Hofstee

Student number: s2300257

Date: 22 September 2022

Name: Jasper van Amerongen

Student number: s2384442

Date: 23 September 2022

Name: Omar Mohamed Anwar Mohamed Elkady

Student number: s2389541

Date: 23 September 2022

82

